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INTRODUCTION

This review is an attempt to survey the vast literature, which has accumu-

lated since the beginning of the century, on the many metabolic effects of

epinephrine and related sympathomimetic amines. The effect of epinephrine

on carbohydrate metabolism was the first of these metabolic responses to be

discovered. Effects on carbohydrate metabolism continue to be the most widely

studied of the biochemical actions of this group of drugs. In recent years great

progress has been made in disclosing the fundamental mechanism by which epi-

nephrine influences carbohydrate metabolism. It has been necessary, therefore,

to devote a large segment of the review to this subject. There has been less

interest in the actions of the sympathomimetic amines on the metabolism of

protein, amino acids, and certain other nitrogenous organic substances. More

attention has been directed toward the effects of epinephrine on the metabolism

of lipide, which appears to be the major fuel in the calorigenic action of epi-

nephrine. A large amount of investigative work has been done to delineate the

effects of epinephrine on lipide metabolism in the intact organism, and recent

reports indicate that epinephrine catalyzes fatty acid catabolism in isolated

tissues and in tissue homogenates. The observed changes in the concentrations

of citric acid cycle intermediates have introduced yet another metabolic re-

sponse to epinephrine. This subject is treated separately in view of its role in

the final steps in the metabolism of most organic substances.

The mechanism of the calorigenic action of epinephrine continues to be a

controversial subject. Although this subject has been reviewed in recent years,

there is sufficient new or neglected material to warrant further discussion of the

evidence bearing on the mechanism by which epinephrine increases oxygen

consumption. Since there has been no extensive survey of the effects of sym-

pathomimetic amines on inorganic metabolism, this subject is discussed in

detail.

This survey of metabolic effects of the sympathomimetic amines would be

incomplete without a section on the interactions of epinephrine and various

hormones. Therefore, two essentially distinct facets of these interactions are

considered; namely, the influences of the hormones on the metabolic effects of

epinephrine, and the effects of epinephrine on the secretion and utilization of

the hormones. There are metabolic effects of epinephrine which appear to be

partially or completely dependent upon the presence of certain of the hormones.

In addition, epinephrine appears to influence the production or utilization of
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certain hormones and, consequently, a metabolic effect of epinephrine may be

secondary to an epinephrine-induced change in hormonal activity. The final

section of the review includes a miscellaneous group of topics.

The actions of sympathomimetic amines other than epinephrine and their

relative potencies for a specific effect are discussed under the specific topic. These

data have been used in several places to assist in analyzing or in supporting a

proposed mechanism of action of epinephrine. For this purpose it is assumed

that the sympathomimetic amines under discussion have the same mechanism

of action. For structures closely akin to epinephrine this appears justifiable.

The hyperglycemic activities of sympathomimetic amines have been investi-

gated extensively and it is from these results that generalizations concerning

structure-activity-relationships have been drawn.

No attempt has been made to relate the actions of the injected am.ines to the

actions of the sympathetic nervous system or to discuss the nature of the ad-

renergic nerve mediators. These matters have been reviewed in detail by von

Euler (193, 194, 195). The effects of the body on the sympathomimetic amines

in so far as it concerns their metabolism have been reviewed by Bacq (18),

Bernheim (32a), Beyer (34), and Blaschko (38). For detailed summaries of the

pharmacology of the sympathomimetic amines the reader is referred to the

book by Bovet and Bovet-Nitti (52), the reviews by Lands (333, 334), and the

recent book, “Noradrenaline,” by von Euler (195).

Most of the early literature on the pharmacology of epinephrine and related

sympathomimetic amines was included in Trendelenburg’s reviews (547, 547a).

A more recent, though less detailed, survey is to be found in the book on the

adrenal gland by Hartman and Brownell (252). More selective reviews of par-

ticular metabolic effects of these drugs are referred to in discussions of the

individual topics.

I. CARBOHYDRATE METABOLISM

A. Blood glucose

1. Epinephrin�e hyperglycemia; glucose liberation and assimilation. During the

haff-century since Blum’s (42) discovery of “Nebennierendiabetes” the mecha-

nisms involved in epinephrine hyperglycemia have been analyzed in minute

detail (99, 113, 547). As a result of the activation of hepatic glycogenolysis

epinephrine causes an increased amount of glucose to enter the circulation from

the liver (566). Since the amount of hepatic carbohydrate present in the liver

at the start of the epinephrine action would account for only a small fraction

of the carbohydrate output of the liver during the period of the hyperglycemia,

it was evident that other substrates for gluconeogenesis must supply a sub-

stantial amount of this glucose. Protein was not the main source of this new

carbohydrate, and the fat-carbohydrate interconversion was not yet established.

Simultaneously with hepatic glycogenolysis, increased muscle glycogenolysis

(216) contributes large amounts of lactic acid (97, 107). Lactic acid from muscle

was shown to be largely responsible for hepatic gluconeogenesis through the

lactic acid cycle (99, 101).
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Interesting indirect support for the importance of the lactic acid cycle in the

action of epinephrine comes from recent comparative studies with glucagon,

an agent which mimics the action of epinephrine on the liver but has no glyco-

genolytic action on muscle. Whereas epinephrine produced a transient loss of

liver glycogen and a rapid recovery to, or above, the control level, hepatic

glycogen remained low for several hours after the administration of glucagon

(118). In addition, glucagon infusions, unlike epinephrine infusions, did not

produce a sustained hyperglycemic level (183, 525). The limitations of hepatic

gluconeogenesis during epinephrine action may be indicated in the “adaptation”

to the glycosuric effect of continuous administration of epinephrine in partially

pancreatectomized rats (286).

Further details have been suggested to complete this picture, but most of

these suggestions remain controversial. Decreased glucose utilization by periph-

eral tissues would place a lesser burden on the liver. This was first suggested by

Wiechmann’s experiments in man (586). Much earlier, Underhill and Closson

(552) suggested that maintained epinephrine hyperglycemia would require a

reduced uptake of glucose by the liver. The possibility that part of the hepatic

glucose might be derived from fat has been adequately supported by subse-

quent work (512, 515). Blood glucose supplied by the kidney (91, 457; but see

46) or decreased glucose utilization in tissues other than muscle could be of

some importance, but the role of these factors in epinephrine hyperglycemia

has received little attention. A small number of tests of epinephrine on veno-

arterial glucose differences in eviscerated dogs gave no evidence that epinephrine

increased the output of glucose from the kidney (457). Glycogenolysis in adi-

pose tissue was activated by epinephrine (499), but glucose was not formed as

an end-product of glycogenolysis in this tissue (396). The many problems which

arose in the course of the development of the present knowledge of epinephrine

hyperglycemia have been discussed extensively (69, 99, 105, 244).

Wiechmann (586) suggested that epinephrine depressed glucose assimilation

by peripheral tissues when he found that the arteriovenous (A-V) glucose differ-

ence was less during epinephrine hyperglycemia than during a comparable

hyperglycemia induced by glucose administration. Since the time of Wiech-

mann’s report a considerable amount of experimental data and discussion have

accumulated in the literature concerning effects of epinephrine on peripheral

utilization of glucose. The validity of Wiechmann’s observation has been con-

firmed repeatedly in man and in animals (10, 108, 112, 509, 510, 556). It has

been stressed that the liver is unable to supply sufficient glucose to account for

the magnitude and duration of epinephrine hyperglycemia. Evidence in favor

of, and in opposition to, a diminished peripheral utilization of glucose has been

reviewed (99, 244). In spite of the many claims of reduced peripheral utilization

of glucose during epinephrine hyperglycemia, it should be understood that this

claim does not imply a glucose utilization below normal resting utilization at

normal glycemic levels. There is a utilization below the expected utilization

accompanying simple glucose plethora. Con and Cori (106) stated it thus, “after

epinephrine. . . carbohydrate oxidation may be increased in spite of diminished

blood sugar utilization.”
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The fact that epinephrine produced a potentiated hyperglycemia with glu-

cose (510) or glucagon (556), together with a reduced A-V glucose difference,

has been interpreted as evidence that epinephrine reduces peripheral assimila-

tion of glucose. In their rapid, intravenous glucose tolerance tests Amatuzio and

his associates (10) found that epinephrine greatly decreased the rate of blood

glucose removal. When rabbits under chloralose were infused with maximally

effective amounts of insulin, the glucose infusion rate necessary to maintain a

normal blood level was reduced by epinephrine (132). All of these results can

do no more than suggest decreased peripheral utilization; they do not prove

decreased peripheral utilization. Effects of epinephrine on hepatic glucose pro-

duction and assimilation complicate the interpretation of the data.

More direct evidence that sympathomimetic drugs cause a decreased periph-

eral utilization of glucose comes from the work of Ingle and Nezamis (288,289).

In eviscerated rats infused with glucose and insulin they found that both epi-

nephrine and isoproterenol (isopropylarterenol, dl-N-isopropyl-norepinephrine,

Isuprel#{174}, Aleudrine), a substance without hyperglycemic activity in rats (175),

reduced glucose assimilation.

There is, however, a large body of information which has been interpreted

as indicating that epinephrine either does not influence, or actually increases,

the assimilation of glucose by peripheral tissues (244). Some workers (71) com-

pared the A-V glucose difference before and after epinephrine. Samson and

Jacobs (478) found little increase in A-V glucose difference in prolonged infu-

sions of epinephrine which maintained hyperglycemia. Griffith et at. (247) found

only increased glucose use by a cat limb during hyperglycemia at the end of a

5-minute intravenous infusion of epinephrine. In a further investigation (245)

similar hyperglycemias induced by infusing glucose (50 mg/kg and mm for five

minutes) or epinephrine (4 /hg/kg and mm for 5 mm) resulted in less glucose

utilization, and more blood flow and oxygen use in the case of glucose infusions.

An explanation of this effect may be found in the suggestion of Cori et at. (112)

that during the first minutes of a rapid rise in blood glucose the A-V difference

measures mainly the loss of blood glucose to the interstitial spaces. Another

difficulty in experiments in which epinephrine is administered intravenously

either as an injection or as a continuous infusion over a period of several minutes

is that the effects of epinephrine may be dissipated within five to ten minutes

after the end of the injection. During this interval A-V differences measure

mainly the exchange between intravascular and interstitial fluids. By the time

measurements related to assimilation can be made, the effect of epinephrine

has been dissipated.

There are two crucial facts to be reconciled in the question of whether or not

epinephrine depresses glucose utilization: 1) The influence of epinephrine on

glucose assimilation at normal blood glucose levels, in the absence of insulin,

has not been demonstrated conclusively. At relatively normal blood glucose

levels epinephrine did not appear to depress glucose utilization in intact animals

(247, 509), in perfused limbs (373a), or in eviscerated rats (289). Nonetheless,

Griffith et al. (246) infused epinephrine into the femoral arteries in cats and

observed an increased lactic acid output at rates of infusion that did not change
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flow, and a suggestion of decreased glucose uptake at rates of infusion which

reduced flow. The experiments of Ingle et at. (289), in which glucose was in-

fused into eviscerated rats, showed that these preparations maintained similar

glucose levels whether or not epinephrine was administered. Epinephrine did

depress glucose assimilation when a large amount of glucose was administered

along with insulin which markedly elevated glucose utilization.

2) The depression of glucose assimilation by epinephrine in isolated muscle

has been demonstrated conclusively (68, 176, 533a, 573). The magnitude of the

depression of glucose assimilation by epinephrine in the isolated rat diaphragm

deserves attention. In either low or high concentrations of glucose epinephrine

depressed assimilation about 30% (569). Similarly, with large variations in

insulin concentration the effect of epinephrine was about 40 % depression (68).

Obviously, the action of epinephrine is independent of the glucose or insulin

concentration. An application of these figures to the problem in the intact ani-

mal is instructive. If the maximal depression of glucose utilization is only about

30 %, under normal conditions, with a glucose arteriovenous difference of about

2 mg %, the change would be about 0.6 mg %. This difference would be well

within experimental error and, thus, not determinable. However, when the

glucose A-V difference is magnified to 10 mg % by hyperglycemia or insulin, a

decrease in uptake of 3 mg % would be detectable.

The explanation for the varied results reported for the action of epinephrine

on glucose assimilation can be that the result will depend necessarily upon

whether the experimental conditions will allow the action to be demonstrated.

A large amount of the controversial data on whether or not epinephrine hinders

glucose uptake may be brought into accord by the evidence discussed in the

preceding paragraph.

There is agreement that when blood sugar is increased there is increased

tissue utilization of glucose. The authors who contend that peripheral utiliza-

tion is diminished by epinephrine, maintain that, during epinephrine hyper-

glycemia, tissue utilization of glucose is less than during glucose administration

to an equal glycemic level. Those who disclaim thIs epinephrine effect state that

apparent reductions in glucose utilization are due to measurements of A-V

glucose differences without accurate, simultaneous measurement of blood flow.

There are several papers which can be interpreted more readily if we accept

the results of in vitro investigations which show that with a larger control rate

of glucose uptake, the absolute depression of glucose assimilation by epinephrine

is greater and, thus, more readily measurable. In this light several studies, which

showed epinephrine to have no effect on glucose utilization by perfused limbs,

may be attributed to low glucose levels and, thus, low control assimilation rates.

Lundsgaard and his co-workers (373a) presented excellent experimental evi-

dence to support this interpretation. They found little effect of epinephrine at

low sugar levels, but with high glucose levels, and thus with elevated control

assimilation rates, epinephrine depressed glucose utilization. This evidence would

explain the apparent ineffectiveness of epinephrine on the glucose-infused, evis-

cerated rat, and the marked effect of epinephrine on the glucose assimilation of
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the glucose-insulin-infused, eviscerated rat (289). This interpretation would

account as well for the fact that low dosages of epinephrine, which have little

effect on blood sugar, do not appear to decrease the arteriovenous glucose differ-

ence, while doses which raise blood sugar prevent the rise in arteriovenous

glucose difference.

Another factor has been overlooked in experiments on glucose absorption by

animal preparations devoid of a liver. Drury et al. (154) reported that the liver-

less preparation developed a high blood lactate, and that glucose assimilation

was reduced by the elevated lactate utilization. These changes may prejudice

studies in liverless preparations in that glucose uptake may be so limited that

epinephrine effects may be masked.

Observations which require explanation are those of Himsworth and Scott

(265) in which epinephrine increased the rate of fall of blood glucose in rabbits

with livers excluded from the circulation, and those of Ingle and Nezamis (289)

in which epinephrine increased glucose utilization in eviscerated rats. Under

these circumstances the calorigenic effect of epinephrine may be sufficient to

increase the overall utilization of glucose.

During exercise (148) epinephrine increased glucose consumption. This ob-

servation must be investigated more extensively. Just as the effect of insulin

on glucose utilization is magnified by muscular exercise, the effect of epineph-

rime in reducing glucose utilization may be overcome by exercise. If this is the

case, epinephrine hyperglycemia and muscle exercise would be acting synergis-

tically to increase carbohydrate metabolism.

a. Species sensitivities to epinephrine hyperglycemia. These data are available

TABLE 1

Minimal doses for epinephrinc hyperglycemia in various species by various

routes of administration

Species
Infusion Injection

Intravenous Intravenous Intraperitoneal Intramuscular Intracisternal Subcutaneous

Man

sit/kg mm

0.025 (103)

pg/kg pg/kg pg/kg

3 (208a)

pg/kg

30 (347)

pg/kg

10
3

(241)
(509)

Rabbit 0.05 (109) 1 (171)
(323)

100 (82) 50

10
(82)

(171)

Cat 0.05 (112)

0.009 (353)

1 (175a) 50

5
(353)

(347)

Rat 0.2 (109) 20 (467) <100 (175) 20 (467) 50 (81)

Dog 0.25 (112) 50 (346)

Horse 31 (37)



492 SYDNEY ELLIS

for several species and for several routes of administration. This information is

of value in making comparisons with other species differences in the action of

epinephrine. Table 1 summarizes the available information. The basis for the

differences appears to be species differences in receptor affinity for epinephrine

in the liver. Experiments with liver slices indicate that the rabbit liver is about

eight times as sensitive as rat liver to epinephrine (179). The ratio for minimal

hyperglycemia indicated a ratio of about 1:4 in favor of the rabbit.

In crocodiles a large, intracardiac dose of epinephrine produced a prolonged

hyperglycemia which started after a latent period of two hours, reached its

peak in about twenty hours, and declined slowly so that the control level was

approached in three days (118a).

b. Effect of route of administration on epinephrine hyperglycemia. Leimdorfer

and his co-workers (347) presented evidence that the injection of epinephrine

and related amines into the cisterna magna increased blood sugar. They sug-

gested that the blood brain barrier was impermeable to these drugs and that

the effect was not due to a direct action of the blood-borne drugs on the liver.

This interpretation has been adequately refuted by his own investigation (347)

of the effects of cutting various nerve pathways and by other investigators

(353). Con has stressed the relative sensitivities of blood pressure and of blood

glucose to epinephrine and has shown that hyperglycemia occurs before any

effect on blood pressure (lila). Portal infusion increased the difference between

the hyperglycemic and the pressor doses (330). Liljedahl (353) has extended

these studies to the cat in order to show that the effects of intrathecal injections

of either epinephrine or levarterenol (l-norepinephrine, l-arterenol) on blood

sugar may occur without any significant blood pressure rise. It is pertinent that

only those amines which were hyperglycemic by intravenous administration did

increase blood sugar by the intracisternal route (346). These data seem to ex-

plain Leimdorfer’s results as a slow absorption of the sympathomimetic amines

from the cerebrospinal fluid spaces.

Sherlock’s (500) conclusion that the hepatic arteries are essential for the

hepatic glycogenolytic action of epinephrine in the rat was based on the intra-

portal administration of epinephrine at a rate somewhat below that rate at

which other investigators obtained hepatic glycogenolysis (406a). Furthermore,

in a group of rats in which surgical removal of the total hepatic arterial supply

had been accomplished, intraperitoneal epinephrine produced hyperglycemia

identical with that observed in intact rats (l75a).

With rapid intravenous epinephrine injection the effects of epinephrine on

the denervated heart and on the rising phase of the hyperglycemic response

were over in less than ten minutes, but the hyperglycemia continued for a con-

siderably longer time (170, 171). The prolonged hyperglycemia depends on slow

utilization of glucose. The rising portion of the hyperglycemic curve ends in

about ten minutes and its steepest portion is during the first minute. In rested,

anesthetized rats and cats intravenous epinephrine activated hepatic phos-

phorylase to its highest level within one minute, and within ten minutes the

phosphorylase activity had returned approximately to its control level (175a).
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c. Effects of season, sex, and disease on pinephrin.e hyperglycemia. Significant

seasonal and dietary variations in epinephrine hyperglycemia in man have been

observed (9). Epinephrine hyperglycemia was more pronounced in women than

in men (189).

Patients with certain mental diseases (8, 259) or with epilepsy (163) exhibit

poor hyperglycemic responses to epinephrine. Very small hyperglycemic and

hyperlacticacidemic responses were obtained in patients with chronic psychoses,

and the responses were restored to the normal range by frontal lobotomy whether

or not the psychosis persisted (259). The investigators had no explanation for

this interesting observation. The insensitivity of patients with mongolism to

epinephrine hyperglycemia was attributed to an associated pituitary insuffi-

ciency (36).

The average hyperglycemic response to epinephrine was subnormal in pa-

tients with liver disease (263, 264, 357, 576) and with diabetes (263, 357). Since

the individual responses within each group vary considerably, the test has little

diagnostic value (9). In the liver disease the hyperglycemic response to glucagon

also did not differ sufficiently from the normal response for diagnostic purposes

(556). Van Itallie and Bentley (556) have proposed a test of liver function based

upon the hyperglycemia which follows the combined actions of subcutaneous

epinephrine and intravenous glucagon. In this test the rise in venous blood sugar

in patients with liver disease was only one-quarter of the rise observed in normal

subjects. The test with glucagon alone did not elicit a markedly different re-

sponse in hepatic disease. It was concluded that the test with glucagon and

epinephrine combines effects on glucose production with effects on glucose

assimilation and thus exaggerates the response to only one hyperglycemic agent.

The test does not appear to measure the ability of the diseased liver to convert

glycogen to glucose since large doses of glucagon increased the blood sugar more

in patients with liver disease than in normal subjects (389a). In addition, it is

doubtful that the results of this test reflect the hepatic glycogen content. He-

patic glycogen may be normal in diabetes and in liver disease (263, 576). It is

possible that another metabolic cycle accounts for the ability of epinephrine to

potentiate glucagon hyperglycemia in normal subjects, but not in patients with

liver disease. In normal subjects the increased blood lactate may be rapidly

converted by the liver into blood glucose. The damaged liver assimilates lactate

at a very low rate (408a). Therefore, the epinephrine-glucagon hyperglycemia

test may be measuring the hepatic function involved in the conversion of lactate

to glucose.

The hyperglycemic responses of stable, insulin-insensitive diabetics to gluca-

gon (315a) and to epinephrine (263, 315a) were of normal magnitude but were

of longer duration. In unstable, insulin-sensitive diabetics glucagon (315a) pro-

duced only a slight elevation of blood sugar and a fall in blood pyruvate and

lactate, whereas epinephrine caused in one study (315a) an abnormally large

elevation in blood glucose, lactate, and pyruvate, and in another study (263) a

subnormal hyperglycemia. The decrease in blood phosphate which followed the

administration of either glucagon or epinephrine indicated a greater utilization



494 SYDNEY ELLIS

of glucose (or insulin secretion) in the unstable than in the stable diabetic. There

is need for additional studies of epinephrine hyperglycemia in unstable diabetics

to determine the usual response and the basis for the modified response in the

diabetic patient.

.�. Hyperglycemic activities of sympathomimetic amines; structure-activity-relation-

ships. Interest in the effects of epinephrine-like compounds on carbohydrate

metabolism began early (358). Nonetheless, data on the relative hyperglycemic

potencies of sympathomimetic amines are mainly crude estimates, rather than

quantitative comparisons. Most workers have used subcutaneous administra-

tion in rabbits, employing doses which raise blood sugar less than 100 mg %.

In this range the slope of the log dose-response curve is small and large varia-

tions in estimates of potencies are inevitable. On the log dose-response curve,

the slope is steepest between 100 and 200 mg % and comparisons here should

be more accurate.
Subcutaneous administration involves many factors which enter into the

final potency results: absorption from the site of administration; glycogen con-

tent of the liver; relative potency of the amine with regard to liver glucose pro-

duction and to peripheral utilization of glucose; etc. The relative contribution

of each of these factors to the hyperglycemic response to one amine may differ

greatly from that to another amine.

Continuous intravenous infusion circumvents certain of the difficulties of

subcutaneous tests, but effects on glucose production and utilization are both

estimated. For various drugs these two factors may differ independently.

Procedures involving rapid intravenous injection and estimation of the maxi-

mal rise in blood sugar during the following ten minutes produce ratios of ac-

tivity which differ greatly (236, 346) from the ratios obtained by subcutaneous

administration and from those obtained with liver slices.

In estimating hyperglycemic potencies some workers have given entirely

misleading figures by determining the ratio of the effects on blood sugar of the

same dose of each compound, rather than the ratio of the doses which produced

equal hyperglycemic effects. The fact that increases in blood sugar are more

nearly proportional to the logarithm of the dose makes a comparison on the

basis of proportionate effects quite inaccurate.

Some examples of the difficulties of making comparisons may be drawn from

the data of Chen et at. (82) and of McChesney et al. (376). These authors found

that isoproterenol was much less than 3’Ioo as potent as epinephrine. This figure

is derived from responses to subcutaneously administered doses which produced

blood sugar rises above 70 mg %. When the drugs were administered subcutane-

ously or intravenously in doses which produced about a 40 mg % rise in blood

sugar, the ratio of activities was about 1:10. The question arises as to which

value is closer to the true effect on the liver cell. From comparative studies on

glucose production by rabbit liver slices, we find that isoproterenol approaches

the potency of epinephrine and its potency is certainly greater than �‘1o that of

epinephrine. Thus, isoproterenol is a potent hepatic glycogenolytic agent in the

rabbit. Some of the data obtained in dogs (346) and in rabbits (82) agree with
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this conclusion. In rats, the picture is far different : isoproterenol is without

action on the blood sugar (175) and it is essentially ineffective on rat liver slices

(175a). These are, we believe, extreme examples; nevertheless, the potential

error is so great that, for our purposes, only broad comparisons may be drawn.

The hyperglycemic potencies of the sympathomimetic amines are influenced

mainly by the configuration at certain sites in the basic j3-phenylethylamine

structure: 1) the groups combined with the nitrogen atom, 2) the presence of

phenolic hydroxyl groups in the meta and para positions, 3) the alcoholic hy-

droxyl group on the alpha-carbon and its spatial orientation, and 4) the length

of the carbon chain beyond the carbon to which the nitrogen is attached.

1) Modifications of the groups attached to the nitrogen have a pronounced

effect on potency. Removal of the N-methyl group of epinephrine results in

norepinephrine2 which has a potency variously estimated at 3’� to 3’�o that of

epinephrine (25, 33, 41, 82, 102, 120, 121, 175, 228, 241, 271, 274, 376, 467,

492, 493). Hydroxytyramine (270) is about � as hyperglycemic as epimne

(492). Kephrine (adrenalone) is far more potent than its demethylated deriva-

tive (400). Phenylephrine (l-meta-sympatol, Neo-synephrine#{174}) is about �‘�o as

hyperglycemic as epinephrine, whereas norphenylephrine is less than �oo as

effective as epinephrine (27, 121). Also norsympatol (121) is much less effective

than sympatol (dl-p-sympatol, Synephrine#{174}) (12, 23, 339, 436). However, butyl-

sympatol was more potent than sympatol (60). l-(3 ,4-Dihydroxyphenyl)-iso-

propylamine with a primary amine group was far less hyperglycemic than

N-methyl-l-(3 ,4-dihydroxyphenyl)-isopropylamine, which possesses an N-

methyl substituent (175).

Increasing the number of carbons attached to the nitrogen also depresses

hyperglycemic potency. When a second N-methyl group is added to epinephrine,

converting the compound to methadren (N-methyl-epinephrine), the hyper-

glycemic potency is reduced to 3�o to 3�o that of epinephrine (215,526). A some-

what higher potency for methadren was obtained from studies on rabbit liver

slices (102). Methadren was as potent as epinephrine, and methadren and

norepinephrine were about equal in potency. Morita (400) found that the di-

methylamino-, diethylamino-, and piperidino-compounds related to kephrine

retained only a very small amount of the hyperglycemic activity of kephrine.

A similar reduction in potency is observed when epinephrine containing an

N-methyl substituent is compared with its N-ethyl (324, 376) or with its N-

isopropyl homologues (376). The hyperglycemic activity of isoproterenol has

been studied in several species and considerable differences in potency have

been recorded. In man the tolerated subcutaneous dose (0.06 mg) did not pro-

duce hyperglycemia (214), but this dose of epinephrine would produce little or

no hyperglycemia (189). In rabbits potency ratios varied from �Io to less than

3’Ioo of the potency of epinephrine (82,324,376) depending on route of adminis-
tration and other factors which were discussed above. Isoproterenol produced

no hyperglycemia in rats even at high dose levels (175). This difference in re-

2 The designation norepinephrine is used in this review as an inclusive term in contrast

to levarterenol which refers specifically to l-norepinephrine.
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spouse of intact rabbits and rats has been traced to differences in the response

of liver slices; rabbit liver slices respond to very low concentrations of iso-

proterenol, but rat liver slices do not respond even to high concentrations. With

the less effective compound kephrine, a change from N-methyl to either the

N-ethyl or the N-$-hydroxyethyl derivatives had little effect on potency (400).

2) The importance of the phenolic hydroxyl groups is evident from the fact

that those compounds which have been found to produce hyperglycemias com-

parable with epinephrine have either a catechol or a phenol nucleus. The hyper-

glycemias obtained with sympathomimetics containing a phenyl substituent

without phenolic hydroxyl groups may be related to nervous stimulation. It

has been found that drugs which depress nervous activity prevent hypergly-

cemia due to this type of agent, but do not interfere with epinephrine hyper-

glycemia. Furthermore, these compounds do not have epinephrine-like action

on liver slices in vitro.

Examples in this category are insufficient. When the para-hydroxyl group

of epinephrine is eliminated, the resulting phenylephrine, containing only the

meta-hydroxyl group, has about �o the potency of the parent compound. On the

other hand sympatol, which has the same configuration as phenylephrine except

that the phenolic hydroxyl is in the para-position, has about 3�oo to 3�oo the

potency of epinephrin#{128} (23, 339). Whereas nor-epinephrinehasat least 3’�o the

activity of epinephrine, the related compound nor-phenylephrine with only the

rn-OH group has less than 3�oo the activity of epinephrine, and the compound

with only the p-OH group is inactive at a dose 400 times that of epinephrine

(121). Similarly, hydroxytyramine (270) is about 3’ioo the potency of epinephrine,

whereas tyramine is less than �‘Iooo as active as epinephrine (84, 303,400). Aloss

of activity occurs when the effective N-methyl-2-(3 ,4-dihydroxyphenyl)-

ethylenediamine is converted to its meta-hydroxy homologue, or when isopro-

terenol is converted to its rneta-hydroxy homologue (175). Paredrine (hydroxy-

amphetamine) has slight hyperglycemic activity in dogs (346), but not in rats

(175).

From these few examples it appears that for hyperglycemic effectiveness the

rn-OH group is more important than the p-OH group, just as the rn-OH group

is the more important for other pharmacological responses.

Ephedrine is a good example in point for the weak activity, or inactivity, of

compounds without phenolic groups. Nagel (407) had found this compound to

possess less than 3r�oo the activity of epinephrine in rabbits. Wilson (590) confirmed

this potency in the rabbit and found the dog slightly more sensitive to ephed-

rine. Chen and Schmidt (83) reviewed the literature and concluded that ephed-

nine has a very weak hyperglycemic activity in animals, including man. This

effect of ephedrine appeared to be an indirect effect on the liver through the

nervous system, since pentobarbital prevented the hyperglycemic action of

ephedrine, but not that of epinephrine (67). More recent tests of ephedrine on

liver slices indicate a small, but inconstant effect (535). We have confirmed this

finding. Cornblath (117) has been able to produce a small, but regular, effect of

ephedrine on the phosphorylase activity of rabbit hepatic slices, and raising

the concentration did not increase the effect to the maximum obtainable with



METABOLIC EFFECTS OF EPINEPHRINE AND RELATED AMINES 497

epinephrine. From the available data it is not possible to determine whether or

not ephedrine does act directly upon the hepatic cell. We have been unable to

demonstrate any influence of ephedrine on glucose output in rat hepatic slices.

This failure has strengthened our suspicion that ephedrine may produce its

effect by releasing neurohumors from the surviving sympathetic nerve endings.

According to H#{246}kfelt(268), the concentration of epinephrine in rat liver is

1:500,000,000. If the concentration in rabbit liver is similar, a release of this

amount of epinephrine is more likely to stimulate the rabbit liver than the rat

liver, since the former is approximately ten times more sensitive than the latter.

Several hydroxyphenyl and phenylethylamine derivatives and aliphatic

amines have been found to be essentially without effect on blood sugar. The

ineffective hydroxylphenyl compounds include p-hydroxyephedrine, p-hydroxy-

methamphetamine (Paredrinol#{174})(459), tyramine, hordenine, paredrine, N-

isopropyl-p-hydroxyphenylethanolamine, and N1-methyl-2-(rn-hydroxyphenyl)

ethylenediamine (175). The ineffective phenylethylamine derivatives include

ephedrine (175, 459), norephedrine (propadrine) (346), amphetamine, meth-

amphetamine (175, 249, 459), and mephentermine (Wyamine#{174}) (172). The

aliphatic amines, 2-aminoheptane (346), 2-methylaminoheptane, 4-methyl-2-

aminohexane, and 2-methyl-6-methylamino-2-heptene (175), elicit no change

in blood sugar.

Certain sympathomimetic amines only distantly related to phenylethylamine

have hyperglycemic activity despite the absence of any structural component

similar to catechol. The dose of tetrahydro-beta-naphthylamine which caused

hyperglycemia (400) also produced central nervous system stimulating effects.

However, naphazoline (Privine#{174})and tetrahydrozoline (Tyzine#{174})were about

one-filth as potent as epinephrine in producing hyperglycemia, and these agents

were central nervous system depressants (283). An analysis of the mechanism

of action of the latter agents is needed since they appear to be exceptions in the

biochemorphology of amines which produce hyperglycemia. For agents which

produce hyperglycemia by affecting hepatic glucose production the mechanisms

appear limited to (a) direct or reflex discharge of the sympathetic nerves, (b)

effective combination with the hepatic receptors for epinephrine, and (c) actions

which mimic the action of, or which release, glucagon. Other effects such as

anoxia or dinitrophenol poisoning may cause glycogenolysis by a direct action

on liver metabolism, but this will not lead to increased glucose production unless

sympathetic stimulation occurs.

3) For the hyperglycemic effect the structure of l-epinephrine appears to be

optimal. The configuration at the carbon adjacent to the aromatic ring is im-

portant. Thus, a change from the 1- to the d-form in epinephrine reduces the

potency of d-epinephrine to about �o that of epinephrinet (155). A similar ratio

of potency is observed in a comparison of 1- and d-forms of norepinephrine (376).

Unless the �-carbinol group is in the i-form the change in potency is the same

whether the alcohol group is in the d-form (vide supra), is oxidized to the ketonic

form as in kephrine (175), is reduced as in epinine (492), is converted into a

methyl or ethyl ether (155), or is replaced by a primary amine group (175).

3The expression epinephrine refers to l-epinephrine.
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Another example of the importance of the $-carbinol group is the reduction

in potency that occurs when norepinephrine loses its alcoholic group in becom-

ing hydroxytyramine (270). However, in the absence of the N-methyl and

rn-OH groups, as in tyramine, addition of the alcoholic group to form 2-(p-

hydroxyphenyl)-ethanolamine appears to have little influence on the hyper-

glycemic potency (529).

A methyl group at position-6 in the ring appears to interfere with molecular

combination which may involve the alcoholic hydroxyl group. Thus, 6-methyl-

epinephrine was found to have about � the hyperglycemic potency of epineph-

rime (242).

4) Lengthening the aliphatic chain beyond the carbon to which the nitrogen

is attached has a deleterious effect on hyperglycemic activity. This change adds

a second asymmetric carbon atom and it may constitute severe steric hindrance

about the critical amine group.

The addition of a single carbon atom at this point converts epinephrine to

3 ,4-dihydroxyephedrine which reduces the potency to about �o (12, 487). The

related 3 ,4-dihydroxynorepinephrine (cobefrine, corbasil) has a slightly greater

potency which is about �io that of epinephrine (12, 459, 487). In this case the

N-methyl group tends to reduce hyperglycemic activity.

The addition of a two carbon chain, as in butanefrine (ethylnorepinephrine),

eliminated hyperglycemic activity in the rat (175), and markedly reduced ac-

tivity in the rabbit (376, 487). Isoproterenol was apparently less effective than

its homologue containing two additional carbons in its sidechain (376).

The slight hyperglycemic activity (less than 3�ooo of epinephrine) of dihydro-

xyphenylalanine (DOPA) in vivo (85, 267) was produced by the metabolic con-

version of DOPA into hydroxytyramine, an effective hyperglycemic agent (270).

Consistent with the selectivity of DOPA-decarboxylase for l-DOPA, di-DOPA
was required in twice the dose of l-DOPA to produce a similar hyperglycemia

(270). With recently improved analytical techniques it is possible that DOPA

could be proven to be converted in part into epinephrine or norepinephrine.

This conversion is made quite probable since Abelin and Goldstein (4) found

an increased excretion of the neurohumors when protein was administered.

Compounds with 2,4- or 2, 5-dihydroxyphenyl rather than the catechol nucleus

were inactive (267).

The extensive literature over the past half-century on the structure-activity

relationship amongst sympathomimetic amines is notably deficient in attempts

to relate changes in potency to anything more than empirical measurements

and gross appearance of the structures on paper or, recently, in three-dimen-

sional models (123a). Lewis (351) determined the ionization constants of the

amino and phenolic groups in a large series of sympathomimetic amines in the

hope of finding some basis for the changes in potency. No correlation between

ionization constant and potency was found.

B. Carbohydrate metabolism in various tissues

1. Liver. The liver was established early as the sine qua non for epinephrine

hyperglycemia (382, 557, 566). Recently, experiments on human subjects have
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supplemented the numerous animal data on the markedly increased hepatic
glucose output in response to epinephrine (25). Epinephrine multiplied glucose

output in these experiments.

It is common to find liver glycogen at or above the control level after the first

hour of action of subcutaneously administered epinephrine. Before this fact was

established (197), there was a difference of opinion on whether epinephrine de-

creased or increased liver glycogen. Only with high rates of intravenous infusions

of epinephrine was it possible to demonstrate a maintained depletion of liver

glycogen (477).

It has been reported that the infusion of epinephrine into the portal vein of

rats did not reduce their hepatic glycogen below the average found with saline

infusions. On this basis it was suggested that epinephrine does not have a direct

glycogenolytic effect on the liver (500). This conclusion was shown to be incor-

rect by a more recent investigation which confirmed the aforementioned results,

but did demonstrate hepatic glycogenolysis with epinephrine when it was infused

intraportally at a slightly higher rate (406a).

An increased glucose output occurs in response to epinephrine with perfused

livers of frogs (350, 400), cats (373) and dogs (11, 48), and with liver slices from

rats, rabbits, cats, dogs, and pigs ( 535, 589). However, Kepinov (309, 310) did

not observe the glycogenolytic effect of epinephrine with perfused livers of

frogs, rats or guinea pigs unless the “glycogenotropic hormone” of the anterior

pituitary was added to the perfusing solution. He concluded that an anterior

pituitary hormone was involved in the removal of epinephrine from the per-

fusate since epinephrine passed through the liver without fixation unless the

pituitary preparation was administered (308). It is difficult to reconcile the nega-

tive findings of Kepinov with the many positive findings with isolated liver listed

above. The requirement for a pituitary hormone for the action of epinephrine is

of interest in view of the reduced epinephrine hyperglycemia in hypophysecto-

mized animals (335, 364). However, in hypophysectomized animals epinephrine

hyperglycemia is reduced because of a deficiency of adrenocortical hormones

(131). Glucose formation in mouse liver homogenates was reported to be increased

by epinephrine (253), but we have been unable to confirm these results with the

reported methods or several modifications thereof (175a).

Underhill and Closson (552) made the suggestion that a more satisfactory ex-

planation for the magnitude and duration of epinephrine hyperglycemia would

be possible if, in addition to increasing hepatic glucose production, epinephrine

also diminished glucose uptake by the liver. Recently, this viewpoint has been

put forth with renewed vigor by Somogyi (509, 510). A diminished assimilation

of glucose by the epinephrine activated liver would supplement the hyperglyce-

mia. This effect is feasible since separate enzyme systems are involved in the

transfer of glucose in the liver cell into the form of glucose-6-phosphate and in

the liberation of glucose into the blood stream from the hepatic pool of glucose-6-

phosphate. Glucose-6-phosphate appears to control the rate of glucose liberation

from hepatic cells and it may inhibit glucose uptake by inhibiting hexokinase

(119, 579). The availability of C’4-glucose should make possible a test of the

hypothesis that epinephrine can interfere with hepatic glucose assimilation.
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Determinations of glucose assimilation and production have been accomplished

with liver slices (458a); more elaborate experiments might solve this epinephrine

problem in perfused livers or possibly in intact animals. For quantitative studies,

in addition to the specific activities of glucose going to and coming from the

liver, it will be necessary to determine the specific activity of the glucose-6-

phosphate. The latter, being the source of the secreted glucose, may approach the

specific activity of the glucose supplied to the liver when glucose uptake is in-

creased (as by insulin) or may be modified in the direction of the specific activity

of the liver glycogen when glycogenolysis is increased (as by epinephrine).

In a paper by Teng and his associates (539) it was reported that, in a medium

which allowed glycogen deposition from glucose, rat liver slices showed less

glycogen deposition in the presence of epinephrine. Since the concentration of

epinephrine at which this effect occurred is a concentration which induced glyco-

genolysis in the absence of glucose (175a), these data cannot be interpreted as

necessarily representing decreased glucose uptake by liver cells in the presence of

epinephrine. A similar criticism must be leveled at the conclusion of Cross and

Holmes (123) that in liver slices epinephrine reduced glycogen synthesis from

either glucose or lactate.

Synthesis of glycogen from sources other than glucose has been demonstrated

by treating animals with epinephrine and determining the incorporation of D2O

(520) or C1402 (519) into hepatic glycogen. These data do not supply the answer

to the direct effect of epinephrine on glycogen synthesis. Epinephrine in these

cases may serve merely to deplete liver glycogen and to raise blood lactate, thus

setting the stage for more rapid glycogen deposition. A similarly complex set of

data is available in the studies on liver slices from starved rabbits (28). During

the first hour in glucose-containing medium, epinephrine-treated liver slices

synthesized less glycogen than did control slices, but during the second hour,

synthesis in the epinephrine-treated slices surpassed the controls. Glycogen

forniation from injected lactate was not reduced by epinephrine (73).

Conjugation of borneol with glucuronic acid by liver slices was depressed by

low concentrations of epinephrine (356a).

Cellular mechanism of action of epinephrine. In recent years many fundamental

details have been added to explain the mechanism by which epinephrine causes

an increased hepatic glucose output. With characteristic foresight Con (100)

suggested “that epinephrine exerts its effect by increasing the concentration of

active enzyme (phosphorylase) in the cell.” In experiments in which the effects

of epinephrine on phosphonylase were explored, only negative results were ob-

tained (100, 344) prior to the work of Sutherland and Con (535). This extremely

important paper demonstrated that epinephrine increased liver phosphorylase

activity in vitro in slices and also in vivo. Sutherland and Cori (535) first estab-

lished that in the chain of reactions glycogen -* glucose-i-phosphate -+ glucose-

6-phosphate -p glucose, the first reaction is the slowest and, thus, the rate-

limiting step. They further demonstrated that epinephrine increased the

concentration of glucose-i-phosphate and glucose-6-phosphate. These facts fur-

ther implicated phosphorylase as the most likely site of action for epinephrine in
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activating glycogenolysis. As a final tour de force, phosphorylase activity was

shown to be increased when liver slices were in contact with epinephrine for

only afew minutes. Subsequently it was found that epinephrine increased phospho-

rylase activity in the diaphragm (533) and in the heart (450a). Phosphorylase

activity in liven and muscle cells was postulated to be in a dynamic state, active

phosphorylase ± inactive phosphorylase, which is controlled by the competing

actions of an inactivating enzyme and an epinephnine-catalyzed system which

reactivates the inactive phosphorylase. Details of the mechanism by which

epinephrine influences phosphorylase activity have been accumulating rapidly.

Sutherland (533) showed that epinephrine increased the phosphorylase activity

of intact liver cells in vitro or in vivo, and that similar treatment did not influence

glucose-6-phosphatase activity. However, when liver cells were damaged by

homogenization or by freezing and thawing, epinephnine did not affect phos-

phorylase activity. The following treatments also interfered with the action of

epinephnine on liver cells: prolonged anoxia, cyanide, azide, alcohols, 0.1 M

fluoride, arsenate replacing phosphate, or a very low concentration of phosphate

(532). These treatments affected similarly the actions of epinephnine and glu-

cagon. The two agents appeared to act in the same manner. Only a few differ-

ences in their actions have been reported. Sutherland found that octodecyldi-

methylammonium chloride abolished the action of glucagon without influencing

the response of the liver to epinephnine. In vitro and in vivo dihydroergotamine

selectively antagonized the action of epinephrine without affecting the response

to glucagon (177). Thus, it would appear that glucagon, which mimics epineph-

rime only in its action on liver, must in part act by a different series of reactions

since it is possible to blockade selectively the effect of glucagon without limiting

the action of epimephrine, and vice versa. From studies on synergisms and antag-

onisms amongst glucagon, epinephrine, and ephedrine, Cornblath (117) came to

a similar conclusion.

Sutherland and Cori concluded that the cell structure was essential for the

action of epinephrine on the liver since homogenization or freezing eliminated

the response. In the latter case the manner of freezing or the species must be of

importance. Although we have confirmed the findings of Sutherland and Con in

what we considered a quick-freeze process for rabbit liver slices, Eser and T#{252}z#{252}n-

kam (190) used a freezing microtome to prepare guinea pig liver slices, and these

slices responded satisfactorily to glucagon. These results indicate either a better

protection of the structure or the preservation of essential reactants by freezing

and thawing the tissue under appropriate conditions.

There has been some investigation of the energy requirements for the activa-

tion of phosphorylase by epinephrine and glucagon. Sutherland and Con (534)

observed that anoxia for a few minutes did not interfere with the action of glu-

cagon, but that twenty minutes of anoxia prevented the reactivation of phos-

phorylase. Further study of the effect of oxygen lack on the response of rabbit

liver slices to epinephrine showed that the anoxic blockade of epinephnine action

on the liver slices was reversible by reoxygenation of the slice (179). This sug-

gested a need for energy in some phase of the action of epinephrine. Fifteen
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minutes of anoxia is known to reduce severely the adenosinetriphosphate of liver

slices. An energy requirement for the reaction of liver phosphorylase is suggested

also by the observations that epinephrine had no influence on liver phosphorylase

at 0#{176}C.or when the liver slice was incubated in 2 ,4-dinitrophenol in concentra-

tions which reduced the high energy phosphate content of the cell (178).

The energy requirement for the action of epinephrine on the phosphorylase

activity of the intact cell might be at one or more sites. Some of the obvious

steps are: 1) the combination of epinephrine with the cell (this is rather unlikely,

since this is probably a physical adsorption); 2) a process by which epinephrine is

taken into and concentrated within the cell; and 3) the conversion of inactive

into active phosphorylase. More detailed information is needed on 1) and 2).

Although it is generally accepted that 1) must be the first step in the combination

of epinephrine with the cell “receptor,” available information does not allow a

decision regarding the functioning of 2) (211). There are some very recent dis-

coveries which appear to make 3) the point at which energy is required for re-

activating phosphorylase. Sutherland and his associates (450, 536, 598) found

that inorganic phosphate was released in the course of the enzymic inactivation

of purified phosphorylase. It was found that in liver slices epinephrine stimulated

the incorporation of P� orthophosphate into phosphorylase and that the P�
which was bound to phosphorylase was released by a selective, phosphorylase-

inactivating enzyme. In keeping with Sutherland’s concept that fluoride controls

phorphorylase activity by inhibiting the inactivating enzyme, only a small

amount of P� was incorporated into phosphorylase in the presence of fluoride

(449). The conversion of inactive into active phosphorylase in cell-free systems

has been accomplished with muscle phosphorylase by Fischer and Krebs (204)

and with liver phosphorylase by Rail et at. (450). For the conversion of inactive

phosphorylase to active phosphorylase the requirements were an enzyme (de-

phosphophosphorylase kinase), a divalent cation (magnesium, liver; manganese,

muscle), and adenosinetriphosphate. The requirement for adenosinetriphosphate

is most interesting.

Sutherland’s group has made the very important announcement that phos-

phorylase activation was stimulated by epinephrine or glucagon in liver ho-

mogenates fortified with magnesium and ATP (449).

The cellular mechanism of action of epinephrine in muscle and heart appears to

resemble the mechanism proposed for the liver. In muscle the conversion of

phosphorylase b (inactive) to phosphorylase a (active) is a dimerization requiring

ATP (204, 306). It is of interest that actin appears to go from its globular to its

fibrous form also by dimerizing and that ATP is required. For this dimerization of

actin, epinephrine, in relatively high concentration, acted as a catalyst (524).

�. Muscle. Although the effects of epinephrine on muscle glycogenolysis and on

lactic acid formation have been demonstrated in vivo (107, 543) and in vitro (257,

405, 406, 573), opinion is divided on the effect of epinephrine on glucose assimila-

tion by muscle. Some of this literature has been examined previously in section

I, A, 1. The several reports (10, 108, 510, 556, 586) that epinephrine decreases

the arterio-venous glucose difference present data which have been minimized
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only by the argument that this change was caused by an increased flow of blood

(244, 512). There can be no similar argument leveled at in vitro data such as

those obtained by Walaas and Walaas (573) with the rat diaphragm. In this

study glycogenolysis and lactic acid production were increased, and glucose

assimilation was reduced. The inhibition by epinephrine of glucose uptake in the

rat diaphragm has been confirmed (176, 533a, 569). Inhibition by epinephrine of

mannose and fructose uptake by rat diaphragm is consistent with the fact that

these sugars also are assimilated through hexokinase (569).

Inhibition of glucose use, as measured by anaerobic glycolysis in rat diaphragm,

was found when epinephrine was injected into the animal, but not when it was

applied to the isolated diaphragm. The latter observation needs some explana-

tion. The fact that anaerobic glycolysis was not inhibited by epinephrine applied

to the rat diaphragm in vitro was taken as evidence that there is no direct effect

of epinephrine on glucose utilization (88). This interpretation of the result was

unjustified, since no measurements of glucose utilization were made, and since

epinephrine was added after the tissue was anaerobic for 30 minutes at 38#{176}C.

When comparable experiments on diaphragms from epinephrine-treated rats

were done under aerobic conditions, increased glucose assimilation and reduced

lactate production were found (573).

Muscle extracts from epinephnine-treated rats used less glucose than extracts

from control animals. The hexosemonophosphate contents of muscle extracts

from control and from epinephrine-treated animals were not different. Since so-

dium fluoride diminished glucose use in control extracts and eliminated the

difference between epinephrine-treated and control muscle extracts, it was con-

cluded that ATP synthesis might be the controlling mechanism influenced by

epinephrine (90).

Hexokinase was partially inhibited by glucose-6-phosphate concentrations

which occur in normal muscle (119, 579). Crane and Sols (119) suggested that

the increased glucose-6-phosphate content of muscle treated with epinephrine
was sufficient cause for a reduced glucose assimilation. Results of experiments on

cyanide-poisoned rat diaphragms led Walaas (569) to suggest that the explanation

for the inhibition of glucose uptake by epinephrine cannot be the increased

glucose-6-phosphate. In the presence of cyanide epinephrine caused some reduc-

tion in glucose uptake, but did not cause an increase in glucose-6-phosphate or in

glycogenolysis. Since severe metabolic (571a) and functional (180) effects of

anoxia occur in rat diaphragms at 37#{176}C.(180) in much less than the 60 minute

incubation period used by Walaas, the above results do not justify the exclusion

of glucose-6-phosphate from a role in the inhibition of glucose uptake caused by

epinephrine.

During a period of exercise epinephrine either did not influence (206), or actu-

ally increased (148), glucose use. Exercise alone is known to increase glucose use

much above the resting level. An interference with the action of insulin occurred

in stimulated muscle (206). The effects of exercise on glucose uptake may be ex-

plained by permeability changes, but more attention should be given to the

variations in phosphonylase activity and glucose-6-phosphate concentrations as
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possible causes of the apparently complex modifications of carbohydrate metab-

olism in active muscle.
Epinephrine did not change the oxygen consumption or the respiratory quotient

of rat diaphragm (573). The adenosinetriphosphate and phosphocreatine con-

tents of frog muscle (257) and of rat diaphragm (568) were not influenced by

epinephrmne.

An interesting paper appeared on the combination of epinephrine with muscle.

Stadie and co-workers (516) exposed rat diaphragms to epinephrine for one

minute at 25#{176}C.;the diaphragms were tested subsequently in epinephrine-free

solution for their ability to synthesize glycogen from glucose. When it was found

that the epinephrine-treated muscles synthesized less glycogen than control

muscles, the result was interpreted as a demonstration of firm fixation of epineph-

rime by the diaphragm. This interpretation is open to criticism on the basis of two

facts: 1) Sutherland (533) found that the action of epinephrine on muscle at 37#{176}C.

occurred within three minutes or less; 2) the diaphragm is quite active metaboli-

cally at 25#{176}C.Stadie’s results were confirmed, but when the treatment with

#{149}epinephrine and washing were performed at 0#{176}C.,there was no activation of

glycogenolysis (178). The latter result suggests that there is a temperature-

regulated metabolic process involved in the epinephrine activation of diaphragm

phosphorylase. A reversible combination of epinephrine with its receptor should

take place at 0#{176}C.if this combination is a physical adsorption. Apparently, the

subsequent processes, which activate phosphorylase are inactive or are so slow at

0#{176}C.that epinephrine has no effect before it is washed from the tissue. From this

evidence it was concluded that a rapid effect of epinephrmne occurred at 25#{176}C.,

rather than that epinephrine combined firmly with the diaphragm.

The concentration of free intracellular muscle glucose is increased during rapid

glycogenolysis induced by epinephrmne (or tetanic stimulation) (115). The free

glucose is now known to come from the nonphosphorylytic cleavage of some glu-

cose from glycogen by the debranching enzyme (amylo-i ,6-glucosidase) (114).

Atypical results were obtained with intra-arterial infusions of epinephrine. No

significant fall in gastrocnemius muscle glycogen and no increase in femoral vein

lactate were observed when epinephrine was infused into the femoral artery (262).

A similar rate of infusion of epinephrmne into a forearm vein produced the ex-

pected decrease in muscle glycogen and increase in venous lactate (263). The

arterial route, however, would cause a higher concentration of epinephrine in the

leg. Related observations (246) indicated that lactate production was increased

by epinephrmne when the rate of intra-arterial infusion did not diminish blood

flow, but lactate production was not increased when a higher concentration of

epinephrine severely hindered blood flow.

McArdle (374) described a hitherto unknown muscle disease in which there was

muscle pain, weakness, stiffness, and severe shortening during ischemic exercise.

In this disease there is a deficiency in the glycogenolytic system of the muscle

such that epinephrine does not elevate the blood lactate nor reduce the blood

phosphate (374). Hepatic glycogenolysis is normal. It is conceivable that this

condition is a result of a deficiency in the phosphorylase activating system of
muscle which has been described by Fischer and Krebs (204).
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When epinephrine is injected into an animal, muscle glycogen decreases pro-

gressively during the time that blood sugar is elevated. The rat diaphragm in

glucose-containing medium responded differently to epinephrine (570). During

the first five minutes glycogenolysis occurred, but, as a probable result of a bal-

ance between glycogen formation from glucose and glycogenolysis activated by

epinephrine, there was no further decrease in glycogen at the end of one hour.

Nevertheless, the difference in glycogen content between the control and epineph-

rine-treated diaphragms increased with time as a consequence of the progressive

increase in glycogen content of the control tissue (570).

3. Heart. Increased cardiac glycogenolysis from the effect of epinephrmne has

been demonstrated in vivo (80, 482) and in vitro (124, 125, 431). Cardiac glyco-

genolysis was greater when epinephrine was administered to anaerobic or cyanide-

treated hearts (44). Many investigators have failed to find an effect of epineph-

rine on cardiac glycogen in intact animals (41, and references given therein). The

factors which determined whether or not the cardiac glycogen was reduced were

the dose of epinephrine and the time the cardiac muscle was taken for analysis. A

moderate dose of epinephrine was required for this action. In rats, the subcuta-

neous administration of epinephrine, 0.5 mg/kg, produced a half-maximal rise in

blood sugar (81). This dose also caused a marked fall in cardiac glycogen in 20

to 30 minutes (175a). A dose of 0.2 mg/kg was not effective (41). The reduction

of cardiac glycogen which followed the administration of epinephrine was rela-

tively transient. After one hour cardiac glycogen had returned to the control

level, whereas liver glycogen had reached its minimum value, and muscle glyco-

gen was still diminishing (80). It is of interest that an earlier controversy con-

cerning the effect of epinephrine on liver glycogen was resolved when it was

shown that the interval of time between the administration of epinephrine and

the sampling of the liver determined whether a decrease or an increase of glycogen

would be observed (475). An exceptional result was the decreased glycogen found

in pigeon heart four hours after the administration of epinephrine (483).

Decreased glucose uptake by the isolated heart of an epinephrine-treated

rabbit was reported quite early (359, 587). This effect was observed when the

heart was removed from an epinephrine-treated animal, but not when epineph-

rime was administered to the isolated heart (196). Cohen (87) obtained analogous

results on rat diaphragm. This effect was observed when epinephrine was admin-

istered to the rat prior to the removal of the diaphragm; application of epineph-

rime to the diaphragm in vitro was ineffective.

Increased glucose assimilation has been reported for epinephrine-stimulated

hearts (431, 587). It is conceivable that the increased rate of the heart may influ-

ence glucose uptake just as activity changes the glucose utilization in skeletal

muscle. In this case any depressant effect of epinephrine on glucose assimilation

may be counteracted by the greater effect of work.

Although epinephrine did not change pyruvate utilization by the dog heart,

prolonged stimulation by epinephrine reduced subsequent glycogen formation

from pyruvate (55).

The mechanism of the glycogenolytic effect of epinephrine on the heart, like

that on the liver and muscle, involves the activation of phosphorylase. In rabbit
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ventricle slices epinephrine reduced the glycogen, increased the phosphorylase

activity, and increased the concentration of glucose-6-phosphate (175a).

4. Smooth muscle organs. In strips of bovine carotid arteries epinephrine in-

creased the lactate concentration and caused contraction (527). In spayed female

rats treated with estrogens, which increased uterine glycogen, epinephrine by

the intraperitoneal route decreased uterine glycogen (325). Subcutaneously

administered epinephrine was not effective (325, 572). Epinephrine increased

glycogenolysis, phosphorylase activity, and glucose-6-phosphate in strips of

rabbit uterus in vitro (175a). Since the major portion of the uterine glycogen is

in the endometrium, the effect of epinephrine on the myometrium requires inves-

tigation. In intact rats, epinephrine reduced the glycogen content of seminal

vesicles (175a).

Epinephrine increased the rate of glucose absorption from the intestine. This

action was not shared by ephedrine (592). It is interesting that both kidney

tubular reabsorption (150, 273) and intestinal absorption of glucose (592) are

accelerated by epinephrine. Epinephrine reduced the glycogen content of rat

small intestine in vivo and of segments of smooth muscle from dog small intestine

in vitro. The glycogen content of segments of rabbit small intestine was not af-

fected by epinephrine (175a).

Increased glycogenolysis occurred in segments of rabbit bladder exposed to

epinephrine (175a).

5. Other tissues. a. Glandular organs. Interest in epinephrine effects on carbo-

hydrate metabolism was first aroused by Blum’s observation of epinephrine

glucosuria (42). Paradoxically, the renal glucose Tm was elevated by epinephrine

(150, 273). Adrenal gland glycogen was reduced by epinephrine and also by

trauma, by adrenocorticotropin, and by insulin (412). Epinephrine reduced the

glycogen contents of spleen, lymph node, and thymus gland in the rat (523).

b. Blood. The glycogen content of leukocytes was unchanged by the adminis-

tration of epinephrine (443, 531). The blood glycogen of rats was reduced at one

and thirteen hours after the subcutaneous administration of epinephrine, but was

normal four hours ofter epinephrmne (523).

c. Adipose tissue. Shapiro and Wertheimer (499) reported a marked decrease

in the glycogen content of the adipose tissue of rats which had received an injec

tion of epinephrine.

d. Brain. The administration of epinephrine to cats did not change the glyco-

gen content of the brain (312). In mice a transient increase in brain glycogen was

observed following the intravenous administration of epinephrine (79).

e. Fetus. Since the injection of epinephrine into pregnant rats reduced fetal

glycogen, it appears that epinephrine crosses the placental barrier (229).

6. Relative potencies of sympathomimetic amines. a. Tissue glycogenolysis in vivo:

With regard to liver glycogenolysis in mice norepinephrine was less than 3r� and

nor-m-sympatol (Novadral) was less than �7’�5 as potent as epinephrine. At the

same dosage ratios only epinephrine caused muscle glycogenolysis (120).

For reducing muscle glycogen in rabbits dl-norepinephrine was much less than

as active as epinephrine, and phenylcphrine was ineffective at ten times the

effective dose of epinephrine (476).
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b. Liver carbohydrate metabolism in vitro: Sutherland and Con (535) found that

half-maximal stimulation of glucose production by rabbit liver slices was achieved

at a concentration of epinephrine of 1 : 15,000,000. Half-maximal stimulation of

rat liver slices required eight times the concentration of epinephrine required by

rabbit liver slices (179). A similar difference in sensitivity to epinephrine hyper-

glycemia was found between intact rats and rabbits (109).

Other sympathomimetic amines have been tested on liver slices. Sutherland

and Cori (535) found the following potencies relative to epinephrine: levarterenol

and d-epinephrine, 1/6; d-norepinephrine, less than 1/60; ephedrine, weak and

irregular; amphetamine, inactive. Con (102) reported that, on rabbit liver

slices, N-methyl-epinephrine (methadren) had about 3’j� the potency of epi-

nephrine. With a larger series of sympathomimetic amines we have found a good

correlation of relative potencies on liver slices and on blood sugar. Catechol and

m-hydroxyphenyl derivatives were potent agents. Tyramine, methedrine, and

aliphatic sympathomimetic amines were inactive. Isoproterenol and butanefrine

were from 3’� to 3’Io as potent as epinephrine on rabbit liver slices, but these

compounds were ineffective on rat liver slices (175a). The actions of isoproterenol

on rat and rabbit liver slices correspond to the potent effect of isoproterenol on

rabbit blood sugar and the ineffectiveness of this compound in the rat (175, 175a).

Cornblath (117) tested some amines on the phosphorylase activity of liver

slices after first incubating the slices to reduce the phosphorylase activity. He

found a small but consistent effect of ephedrine and little or no effect with am-

phetamine. Ephedrine, when combined with epinephrine, either showed little

addition or blockade; under similar conditions amphetamine prevented the

effect of epinephrine. In the intact animal blockade of epinephrine hyperglycemia

by ephedrine has been observed in rats (175) and in rabbits (323).

c. Muscle carbohydrate metabolism in vitro. In rat diaphragms epinephrine in-

creased glycogenolysis at a dilution of 1: 30,000,000 (w/v) and ephedrine at

1:300,000. Tyramine was ineffective (550). For effects on glycogen synthesis and on

glucose utilization the potency of levarterenol was 3-� and the potency of dl-nor-
epinephrine was �‘j� that of epinephrine (571). Another report indicated that

levarterenol and phenylephrine were less than Mo as potent as epinephrine, and

isoproterenol was ten times as potent as epinephrine in reducing the glycogen of

the rat diaphragm (181). Amphetamine (561) and ephedrine (181) had little

effect on the glycogen of the rat diaphragm.

d. Lactic acid production. Several compounds have been investigated for their

ability to produce hyperlacticacidemia. With the exception of norepinephrine

there has been no quantitative investigation of other amines on blood lactate.

Information on the effect of several sympathomimetic amines on blood lactic

acid concentration and on oxygen consumption would be useful for testing

Lundholm’s (370, 371) hypothesis that the calorigenic effect of epinephrine is

caused by the hyperlacticacidemia.

Levarterenol by continuous infusion in man was estimated to be about 3� as

potent as epincphrine in raising blood lactate (25). For producing hyperlactic-

acidemia in rabbits (371) and rats (41) levarterenol is about Mo as potent as

epinephrine. In dogs the intravenous infusion of epinephrine at a rate of 1 �.Lg/kg
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and nun increased blood lactate, but at this rate of administration levarterenol

was ineffective (58).

The following amines caused hyperlacticacidemia in rats at doses which caused

hyperglycemia: epinephrine, levarterenol, kephrine, and 1-(3 ,4-dihydroxyphen-

yl)-N2-methylethylenecliamine. Other phenolic amines such as isoproterenol,

butanefrine, tyramine, i-(3-hydroxyphenyl)-N2-methylethylenediamine, and 2-

(4-hydroxyphenyl)-N-isopropylethanolamine, and aliphatic amines such as 2-

methylaminoheptane, and 2-aminoheptane in relatively high doses produced

hyperlacticacidemia even though hyperglycemia did not occur (174, 175a).

Large doses of epinephrine increased lactate liberation and decreased glucose

assimilation by the brain (408).

In early investigations it was thought that the effects of epinephrine on carbon

dioxide production could be studied by observing the change in color of the pH

indicator phenolsulfonphthalein. This method determined the total acid liberated.

Since, in the presence of epinephrine, most of the acid produced by tissues is

lactic acid, these early studies showed that epinephrine increased lactic acid pro-

duction in several tissues. Garrey (213) found an increased production in the

cardiac ganglion of Limulus. Martin and Armitstead (385, 386) found an increase

in frog muscle, brain, mesonephron, liver, stomach, and intestine. In more direct

studies by chemical analysis lactic acid formation was found to be increased by

epinephrmne in rabbit intestine, bovine tracheal muscle, and guinea pig uterus.

Other amines which were effective on rabbit jejunum were levarterenol, isopro-

terenol, dl-3 , 4-dihydroxyephedrine, dl-3 ,4-dihydroxy-norephedrine, and phenyl-

ephrine. Ephedrine did not stimulate lactate production. Either ephedrine or

ergotamine was able to block the effect of epinephrine on lactate production

(397). In frog unstriated muscle, which was relaxed by epinephrine, lactic acid

production was insignificantly reduced (453).

II. METABOLISM OF NITROGENOUS ORGANIC SUBSTANCES

1. Protein metabolism. It was first noted by Blum (42) that “Nebennieren-

diabetes” was not associated with an elevated urinary excretion of nitrogen.

Similarly negative results were obtained upon prolonged infusion of epinephrine

(478). In the intact animal, however, epinephrine-induced changes in urine flow,

which regulate the rate of urea excretion, might lead to an underestimation of the

total change in protein catabolism (545).

Urinary nitrogen excretion was increased by epinephrine in subjects fed an

inadequate diet or fasted (6, 430, 456, 552). Conversely, glucose or glucose and

insulin administration reduced the action of epinephrine on protein catabolism

(186, 456). These results are in accord with the concept that fasting magnifies the

negative nitrogen balance caused by stress (581). With large “stressing” doses of

epinephrine in rats protein catabolism was stimulated (186, 413). The protein

catabolic effect was very marked when epinephrmne was superimposed on trauma

(413). Engel (186) suggested a “permissive” role for the adrenocortical hormones

in this “stress” effect of epinephrine, since the protein catabolic effect of epi-

nephrine was absent in adrenalectomized-nephrectomized rats, but was present
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in adrenalectomized-nephrectomized rats which were pretreated with cortisone.

Rose and Nelson (467a) found that intravenous epinephrine and intraportal

epinephrine or glucagon increased urea production in nephrectomized rats when

the rate of administration was sufficient to deplete liver glycogen. These results

suggest that the stress required for the protein catabolic effect may be the

depletion of hepatic glycogen, but in the absence of the cortical hormones the

liver is unable to respond to this stress by increasing protein catabolism. Albeit,

only a small portion of the calorigenic effect and of the gluconeogenesis can be

attributed to the action of epinephrine on protein metabolism (99).

The hypoalbummemia which followed large repeated doses of epinephrmne

cannot be interpreted as an increase in protein catabolism (222) without taking

into account the amount of albumin excreted by the kidneys. Proteinuria asso-

ciated with the administration of epinephrine has been reported repeatedly (315,

517, 545, 599).

Another indication of increased protein metabolism is the decreased amino

acid nitrogen content of the blood which follows the administration of epinephrine

(61, 209, 470, 474). This action of epinephrine is not mediated by the pituitary or

the adrenal glands (243, 366, 470). In fact, levarterenol caused significant lower-

ing of blood amino nitrogen only in hypophysectomized rats, not in intact rats

(243).

The mechanism of the action of epinephrine on blood amino acids is not com-

pletely defined. Since hypoammoacidemia followed the administration of either

insulin or epinephrine (122, 128, 367, 474), the epinephrine response may be an

indirect effect mediated by the pancreas. Consistent with this interpretation it

has been found that epinephrine must be given in an amount sufficient to produce

hyperglycemia in order to produce hypoaminoacidemia (128, 470). Further sup-

port is gained from the observation that insulin reduced the blood amino acid

level in eviscerated or in eviscerated-adrenalectomized rats, whereas epinephrine

has no tendency to reduce the blood amino acids in the eviscerated rats (287).

Several interpretations of the latter result are possible; 1) an absence of the pan-

creas eliminates insulin release; 2) the liver, or other viscera, may be required

for the effect of epinephrine; 3) other less obvious factors may modify the results

in the eviscerated preparation. If insulin is required for this effect of epinephrine,

blockade of epinephrine hypoaminoacidemia by pentobarbital anesthesia may be

attributable to a reduced hyperglycemic response under anesthesia (279) and,

consequently, a diminished secretion of insulin.
Luck and his co-workers concluded that insulin influenced blood amino acids

through the release of epinephrine because it had been observed that insulin did

not produce hypoaminoacidemia in adrenodemedullated rabbits (129) or in

adrenalectomized rats (243). This interpretation cannot encompass the result

that insulin decreased the blood amino acid level when insulin hypoglycemia was

prevented by glucose administration (368). Another fact at odds with an indirect

mechanism for insulin is Ingle’s observation that insulin, but not epinephrine,

reduced the blood amino acids in eviscerated or eviscerated-adrenalectomized

rats (287).
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After reviewing the evidence, Russell (470) concluded that epinephrine and

insulin have independent effects on blood amino nitrogen. The present reviewer

finds that much of the evidence favors an indirect effect of epinephrine which,

through its hyperglycemic action, causes the secretion of insulin.

Luck and Morse (367) had reported that two hours after the administration of

epinephrine the amino acid content of rat liver and muscle was reduced. Fried-

berg and Greenberg (209) found that one hour after the administration of epi-

nephrine to rats the amino nitrogen of the kidney was reduced and the amino

nitrogen of the liver and skeletal muscle was slightly increased. The apparent

discrepancy between the two reports on the changes in amino acids of muscle

and liver may indicate merely that the fall in amino acid content of these tissues

occurs during the second hour when the blood amino acids are also lower. Castro

and Monaco (76) analyzed tissues from control and epinephrine-treated rats for

glycine, alanine, threonine, glutamic acid, and aspartic acid. They found that

epinephrine produced the following significant changes from the amounts found

in control rats: aspartic acid was increased in the liver; glycine was increased, and

alanine and glutamic acid were diminished in skeletal muscle; glutamic acid and

glycine were increased in the heart.

Epinephrine reduced the non-protein sulfhydryl compounds (mainly gluta-

thione) of liver and kidney, but not those of blood or muscle. There was no

change in blood or hepatic ergothioneine, another sulfhydryi compound, so that

there is a certain selectivity in the effect (455).
The relative potencies of epinephrine-like substances in lowering blood amino

acids were similar to their relative potencies for causing hyperglycemia: i.e.,

epinephrine � norepinephrine> phenylephrine � m-hydroxypropanolamine =

epinine (474). However, a later report indicated that only epinephrmne produced

this effect; other amines, namely, norepinephrmne, phenylephrine, ephedrine,

methamphetamine, propadrine, phenylethylamine, and tuamine, were ineffective

(61). A dose of levarterenol which was ineffective in intact rats caused hypoami-

noacidemia in hypophysectomized rats (243). Several points might be clarified by

concurrent data on blood sugar and blood amino acid changes in response to the

sympathomimetic amines.

�. Creatine metabolism. Rose (468) reviewed the early literature which sug-

gested a relationship between muscle glycogenolysis and increased creatine ex-

cretion. Epinephrine caused creatinuria when muscle glycogen was severely de-

pleted, as indicated by an insignificant increase in blood lactate, but not when

there was adequate muscle glycogen. Comsa (94) has summarized the more recent

literature.

Increased excretion of creatine occurred in animals after the administration of

epinephrine (94, 436). The thyroid hormone plays an essential role in this action

of epinephrine (94, 95). Increased creatine excretion was induced by epinephrine

in patients with pathologically elevated creatine excretion caused by progressive

muscular dystrophy or diabetes mellitus, but creatinuria was not induced by

epinephrine in normal subjects (445). The significance of the increased creatine

excretion is not clear. Some of the excreted creatine may come from muscle
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stores, but much of creatine lost may be due to a decreased assimilation by

muscle of the creatine which normally is formed in the liver and is transferred to

muscle (29, 479).

Some doubt is cast upon the reports of epinephrine creatinuria by the fact that

glucose and other substances in the urine interfere in the usual colorimetric

determination of creatine. When additional tests were done to prove that the

color reaction was measuring only creatine, it was found that epinephrine did not

produce true creatinuria (327).

Tissue creatine was reported to be increased (428), unchanged (327), or slightly

reduced in muscle, greatly reduced in heart, and unchanged in testicle and brain

(422) after the administration of epinephrine.

Epinephrine accelerated the synthesis of creatine from arginine in rat muscle

pulp (428). This is an interesting in vitro effect of epinephrine, but it cannot be

determined from the data whether the reaction occurred in a cell-free prepara-

tion. The fact that dihydroergotamine and dihydroergocornine did not prevent

this in vitro effect of epinephrine does not supply significant information, because

these adrenergic blocking agents have a relatively weak antagonism against

epinephrine actions on skeletal muscle.

In man, large repeated doses of epinephrine increased the daily creatinine ex-

cretion (39), but on a somewhat reduced dose schedule the changes in creatinine

were not consistent (156). The observed effects on creatinine excretion are more

likely a measure of the effects of epinephrine on glomerular filtration rate than a

measure of changes in creatine-creatinine metabolism.

Pflug (436) observed that sympatol, unlike epinephrine, did not increase uri-

nary creatine. In this investigation the dose of sympatol, which did not produce

creatinuria, did not produce hyperglycemia comparable to that produced by

epinephrine. Reports indicating that epinephrine congeners do not produce the

effects elicited by epinephrine may not mean that the response is selective for

epinephrine, but may indicate that the administered dose of the congener was

insufficient. For example, in experiments in which the subcutaneous doses were

based upon the relative pressor potencies of the compounds by the intravenous

route (61), norepinephrine, phenylephrine, and ephedrine did not reduce blood

amino acids. However, Sahyun (474) did observe hypoaminoacidemia with

several congeners. It might be of interest to investigate activities of congeners in

doses which produce hyperglycemic effects as great as epinephrine. Thus, Mo-

sonyi and Hermann (401) found that sympatol did not increase the urinary

glucose:nitrogen ratio in dogs treated with phloridzin, but the dose of sympatol

was probably insufficient to produce other metabolic effects characteristic of the

action of epinephrine.

3. Uric acid metabolism. Some of the work on the effects of epinephrine on

uric acid metabolism was reviewed recently by Bishop and Talbot (35). The early

literature was summarized by Chaikoff et al. (78).

Excretion of uric acid and allantoin was increased in animals by epinephrine

or by activating the adrenal medulla through insulin hypoglycemia (78, 337,

395). Ordinary therapeutic doses in man and small doses in rabbits did not pro-
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duce this effect (395), but large repeated doses in man did increase uric acid

excretion (39, 156). Epinephrine also increased the blood uric acid in dogs (78,

337). The “uricosuric” effect of epinephrine may be a consequence of an elevated

blood uric acid concentration. With the available experimental evidence it is

impossible to determine whether or not there is a direct effect of epinephrine on

the tubular mechanisms controlling uric acid excretion.

It has been suggested that the uricosuric effect of epinephrine may come about

by the activation of the pituitary-adrenal axis. The facts in favor of this mech-

anism are: 1) the large dose of epinephrine needed for the action; 2) adrenocor-

ticotropin and cortisone have uricosuric activity (35); 3) epinephrine uricosuria

was not observed in an Addisonian patient with a dosage regimen effective in

normal individuals (39); 4) in adrenalectomized dogs with a small residuum of

adrenal cortex epinephrine was effective (337).

4. Hexosamine. Large doses of epinephrine in man did not modify the serum

hexosammne level (43).

111. FAT METABOLISM

The effects of epinephrine on fat metabolism may be subdivided for conven-

ience of discussion into its effects on fat catabolism and on fat transport. Refer-

ences to the literature before 1930 are contained in the papers of Con and Cori

(105) and Page, Pasternak and Burt (425). Wertheimer and Shapiro (583) and

Deuel (144) have reviewed the more recent contributions.

1. Fat catabolism. Con and Con (105) reviewed the work on the effects of epi-

nephrine on metabolism. From the published evidence and their own results they

concluded that fat was the major fuel for the increased metabolism induced by

epinephrine.

It is all the more striking, then, that one of the first differences to be noted

between the glycosurias of diabetes meffitus and of “adrenalin diabetes” was the

absence of ketonunia in the latter (42, 599). Many subsequent investigators

found that epinephrine caused no changes in blood and in urinary ketones in well-

nourished subjects (14, 149, 424, 576), or even a fall in blood ketones as blood

glucose and lactate increased (332).

Ketone body production was increased by epinephrine, however, when hepatic

glycogen was low (173, 280, 459, 576), or when glycogen utilization was impaired

as in glycogen storage disease (424). It is of interest in this connection that de-

medullation of the adrenals reduced the ketonuria which normally accompanied

phloridzin treatment (198). Epinephrine increased ketone formation in perfused

cat liver (40), in rat liver slices (254, 411), and in liver homogenates (251).

Epinephrine reduced the amount of radioactive acetate incorporated into the

fatty acids of rat liver slices (255). This effect was similar with glucagon (HGF)

and with the latter the depression of acetate incorporation was similar whether

acetate, fructose, or glucose was in the medium (254). Increased production of

acetoacetate and diminished fatty acid synthesis by the liver was postulated to

result from an increased oxidation of fat (254). Support for this conclusion is

found in the increased oxidation of octanoate observed by Harel-Ceddaha (250)
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when epinephrine was added to a rat liver homogenate fortified with cytochrome

C and ATP. In further studies Harel-Ceddaha (251) found that epinephnine in-

creased the conversion of octanoate into acetoacetate, a result which was inter-

preted as an interference with the condensation of acetate with oxaloacetate.

Addition of malate, an oxaloacetate generator, prevented the augmentation of

acetoacetate formation during the increased octanoate oxidation. Thus, an

alternative explanation would be that there was insufficient oxaloacetate to con-

dense with acetyl-coenzyme-A which was being formed at a higher rate.

The investigations in intact animals suggest that epinephnine elevated ketone

production only when hepatic carbohydrate metabolism was inadequate. Experi-

ments on hepatic tissue in vitro indicate a consistent’activating effect of epineph-

nine on ketone production. There is rapid depletion of glycogen from the liver

in vitro, especially in rat liver slices, and epinephrin� and glucagon increase the

rate at which glycogen is depleted. This evidence raises the question of whether

epinephrine has a direct catalytic effect on fat metabolism or whether the glyco-

genolytic effect is the only primary action which, under certain experimental

conditions, secondarily increases fat catabolism.

2. Fat transport. Under this heading the changes in the concentrations of blood

and tissue lipides will be considered. Catabolism of lipides, undoubtedly, influ-

enced the results, but the relative importance of this factor has not been de-

termined.

In the early investigations various groups reported that epinephnine increased,

decreased, or did not change the amount of fat in the blood (425). Some unusually

high epinephrine hyperlipemias (266) were found to be based on faulty analytical

methods (221, 363). The more recent investigations with sound analytical pro-

cedures continue to show diverse changes in blood fat. The factors which appear

to determine the type of response obtained are the dose of epinephnine, the

duration of its action, the nutritional state of the subject with special reference

to the liver glycogen, and the existing level of blood fat. Similar factors deter-

mine whether liver fat will be modified by epinephnine. With these factors at

hand, it is possible to account for many apparently discrepant results on the basis

of variations in experimental conditions without assuming an extremely variable

action of epinephnine.

Some investigators reported that epinephrine produced little or no change in

total blood fat (221, 363), but others found that chronic administration of epi-

nephrine increased blood phospholipide, total cholesterol, and fatty acids (305).

In chickens, which have an especially high blood phospholipide level, epinephnine

decreased the concentration of this lipide (379). Other reports showed a decrease

in blood fat fractions following epinephrine administration (425, 486). Under

certain conditions, individual lipide fractions were modified by epinephnine when

the total lipide concentration remained unchanged (167, 168). Epinephrine in-

creased the concentration of unesterified fatty acids in the blood (152a, 233).

Cholesterol changes following epinephrine administration have been as diverse

as the changes in total blood fat. Bruger and Mosenthal (59) reviewed the early

literature which included reports of increased, of decreased, and of unchanged
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cholesterol levels after the administration of epinephrine. Their own studies mdi-

cated no changes in blood cholesterol. Others have reported small increases (95,

381, 434, 477) or decreases (486).

In keeping with an action on fat transport, epinephrine increased liver lipides

(86, 378, 425, 441, 537, 560, 582, 594, 595) and reduced adipose tissue lipide (86).

The action of epinephrine on fat depots in rats was selective in that perirenal

fat was reduced, but interscapula fat remained unchanged (86). After small doses

of epinephrine, the carcass fat of mice was slightly reduced, but the change was

of doubtful significance (126). A color reaction with thiobarbituric acid, which

appears to measure unsaturated fatty acid peroxides, has been used to show

that epinephrine increased the reactive substance in brain, kidney, and liver

(153). An increase in hepatic neutral fat without a change in total fat was found

in the rat one hour after the administration of epinephrine (167). Six hours after

a large dose of epinephrine in oil and some radioactive phosphate were adminis-

tered to rabbits the total lipides, neutral fats, and esterified cholesterol were in-

creased in the liver, only phospholipides were elevated in plasma, and none of

the lipides was changed significantly in the aorta. The rate of phospholipide

formation in liver and in aorta was significantly increased. Daily intravenous

administration of epinephrine to rabbits increased the plasma neutral fat and

decreased plasma cholesterol esters. This treatment did not change the liver

lipide fractions or liver phosphorus turnover, but did increase the specific ac-

tivity of aortic phospholipide phosphorus without affecting the concentrations of

the various lipide fractions of the aorta (162). In another paper from the same

laboratory (166) increased plasma total lipides, phospholipide, and neutral fats,

and reduced hepatic neutral fat were reported for rabbits on a similar treatment

schedule. On the day following the last series of daily or twice daily injections of

epinephrine there was an increase in the blood neutral fat: phospholipide ratio

and a visible lipemia (166). These effects on plasma fat may be an aggravating

factor in the pathogenesis of the vascular lesions caused by epinephrine.

The limited studies of the effects of norepinephrine on fat metabolism indicate

that this agent does not elevate blood cholesterol under the same experimental

conditions and at the same rate of administration as were used for epinephrine,

which did increase blood cholesterol (433). Norepinephrine increased the neutral

fat of the liver but did not change the cholesterol or phospholipide co�itent (17).
The development of fatty livers, which normally follows the administration of

hepatotoxic agents or pancreatectomy, requires the adrenal gland (86, 378, 560).

In more recent studies Wool et al. (594, 595) found that ethionine did not increase

liver fat in adrenalectomized, adrenodemedullated, or ergotamine-treated rats.

Further support for an important role for epinephrine in fat mobilization comes

from their observations that adrenalectomized rats required “permissive” doses

of cortisone to allow epinephrine to restore the ability of the rat to mobilize fat

to the liver, and that epinephrine restored the response to adrenodemedullated

rats. Since epinephrine elicited little effect in the absence of the cortical hor-

mones, an interaction of hormones of the adrenal cortex and the adrenal medulla

is again demonstrated. An explanation for these results may be that the adrenalec-
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tomized animal cannot maintain a normal amount of fat in adipose tissues and

the “permissive” dose of cortisone presents the ethionine-epinephrine treated

animals with fat for transport to the liver. More extensive discussions of the rela-

tion of adrenal gland to adipose tissue and fat transfer were presented by Wert-

heimer and Shapiro (583) and Deuel (144). The several effects of epinephrine on

fat transport would be fundamentally in agreement with the opinion of Wert-

heimer and Shapiro (583) that the sympathetic innervation of adipose tissue is

important for normal fat storage and transport.

The mechanism of the epinephrine effect on fat transport is not clear. One pos-

sibility is that there is a direct relationship to the glycogenolytic effect in the liver.

Some studies of the actions of glucagon may be relevant. This agent appears to

affect only liver glycogenolysis. Glucagon did not reduce the glycogen content of

adipose tissue (188), whereas epinephrine did reduce this glycogen (499). Gluca-

gon, however, was as effective as epinephrine in stimulating the transport of fat

into the liver (432a). The fact that epinephrine (432) did not increase fat trans-

port under similar experimental conditions may be related to the observation

that epinephrine caused only a transient reduction in liver glycogen, whereas

glucagon caused a diminished liver glycogen during the entire period of the ex-

periment on fat transport to the liver (118). Another possible mechanism for the

action of epinephrine on fat transport is an effect mediated by the pituitary and

adrenal glands. The recent observation (118) that glucagon depleted the adrenal

ascorbic acid makes this mechanism deserving of experimental investigation. In

addition to adrenocorticotropin there may be a release of pituitary hormones

more directly concerned with fat mobilization.

IV. BLOOD CITRIC ACID CYCLE INTERMEDIATES

To the well-established hyperlacticacidemia and the less frequently studied

rise in blood pyruvic acid (426, 490), which are regular responses to epinephrine,

there now must be added a parallel rise in some of the citric acid cycle inter-

mediates. Pincus and his associates (439) observed that epinephrine adminis-

tration in man caused an increased blood level of citric acid. The elevation of

blood citrate was confirmed by this group and others in man and was demon-

strated also in other animals (259, 440, 564). Villano and Tritto (564) reported

a rise in the a-keto acids, which include pyruvic, a-ketoglutaric, and oxaloacetic

acids. With a specific method for a-ketoglutaric acid Henneman and her co-

workers (259) confirmed the observation that epinephrine raised the blood level

of this acid. Other investigators concluded that epinephrine lowered the a-keto-

glutaric acid level of rabbit blood (285). Their data, however, did not demonstrate

a significant change, so that this report only failed to confirm the rise in a-keto-

glutaric acid.

Some attempts have been made to determine whether the increased blood

concentrations of these organic acids are secondary to epinephrine hyperglycemia.

Villano (563) reported that glucose administration produced a temporary rise

in acids of the citric acid cycle and a subsequent fall below resting level, but

Pincus et al. (439) recorded only a fall in blood citrate following glucose. From
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these results it appears that glucose plethora does not produce the same changes

as epinephrine, and thus it seems unlikely that epinephrine hyperglycemia

mediates the rise in citric acid cycle intermediates.

Epinephrine may raise the blood levels of the citric acid cycle intermediates

as a consequence of the primary elevation of blood lactate and pyruvate. Experi-

mental evidence for this mechanism is the recent observation that the intra-

venous infusion of sodium d-lactate in man raised the a-ketoglutaric acid

concentration of the blood (7a). It is also possible that the activation of glycogen-

olysis or other metabolic processes in the cell may increase the formation and

liberation of the citric acid cycle intermediates. Whatever the mechanism of the

increased formation of these acids, it would be of interest to learn which tissue(s)

is (are) responsible for the increased formation of the citric acid cycle inter-

mediates.

V. OXYGEN METABOLISM

1. The calorigenic effect. The discovery of the increased oxygen consumption

of the body in response to epinephrine has been attributed to Belawenez, who,

according to Juschtschenko (302), observed this effect in 1903. Boothbyand Sandi-

ford (47) reviewed the early work on this effect, which they called the calorigenic

action of epinephrine. Exhaustive bibliographies on this subject are included in

the reviews by Lundholm (370), by Griffith (244), and by Sarzana et al. (484).

Even the earlier work indicated that a major portion of the extra oxygen con-

sumption was attributable to fat catabolism (98, 106).

It has been well-established that epinephrine increases oxygen consumption in

most speaies (244, 370). Nonetheless, there have been some studies in which

epinephrine either did not change, or actually diminished, oxygen consumption.

For a possible explanation of these divergent results we may refer to the original

findings of Belawenez (302) who first observed the calorigenic effect of epineph-

nine, but more to the point, he also observed that large amounts of epinephrine

reduced both oxygen use and body temperature. Many later investigators con-

firmed the observation that larger doses of epinephrine lead to a fall rather than

to a rise in body temperature (547, for early references see 192). With larger doses

of epinephrine there was a preliminary decrease in oxygen use due to respiratory

depression followed by a more prolonged effect on oxygen use due to interference

with pulmonary circulation (192) and, no doubt, interference with gaseous ex-

change as a result of pulmonary edema. Jones and Griffith (300) called attention

to the respiratory changes which occurred with large doses of epinephrine. The

respiratory effects may account for the early decrease followed by an increase in

oxygen and carbon dioxide exchanges which Delaunois et al. (134) observed in

dogs to which epinephrine was given in relatively large, intravenous doses. That

respiratory depression by epinephrine was involved in the reduced oxygen

metabolism was demonstrated by overcoming some of the depression of oxygen

metabolism with artificial respiration (134, 370). Effects of epinephnine on pul-

monary blood flow obviously could not be modified by artificial respiration.

In certain species, such as fishes (505) and pigeons (423, 481), epinephrine did
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not cause a calonigenic effect. The doses of epinephnine used in these studies

were very large. There is some evidence of interference with tissue oxygenation

under these experimental conditions. Thus, Feinschmidt and Ferdmann (200a)

found that a similar dose of epinephrine decreased the phosphocreatine and

increased the inorganic phosphate of pigeon muscle.

The excess metabolism evoked by the administration of epinephrine is not

limited to an effect on a single organ. Newer techniques have been employed to

demonstrate that epinephrine and levarterenol increase the oxygen use of the

liver in vivo (25, 506). A transient increase in apparent heat production of the

liver was recorded in the first few minutes after the administration of epinephnine

(299). Stimulation of hepatic oxygen consumption by epinephnine must come

about through an indirect action. Epinephrine did not increase the oxygen

consumption of liver slices (136). Additional evidence against a direct stimulation

of hepatic oxygen consumption is the fact that intraportal administration of

epinephrine produced a smaller effect on metabolism than did intravenous

administration (133).

Experiments in hepatectomized frogs, however, indicated that the liver was

not essential for the calorigenic effect (104). Previous to this report Soskin (511)

had found that the calorigenic effect was absent in eviscerated or hepatectornized

dogs. Similarly contradictory results were obtained when the importance of the

liver was evaluated for the increased temperature of muscle which regularly

followed the administration of epinephrine (74). A recent investigation of the

effects of evisceration on blood lactate may explain the conificting results.

Drury and his co-workers (154) noted a marked hyperlacticacidemia in evis-

cerated animals. Since Lundholm (370) found a relation between epinephrine

hypenlacticacidemia and the calorigenic effect, it is possible that the high bood

lactate of hepatectomized animals might mask the effect of epinephrine on oxygen

metabolism. Soskin (511) found no increase in blood lactate, as well as no in-

crease in metabolism, in his eviscerated animals.

Intravenous infusion of epinephnine increased cerebral oxygen use, whereas

levarterenol did not produce an increased cerebral metabolism (314). When

epinephnine or levarterenol was administered intramuscularly, there was no in-

crease in cerebral oxygen consumption (498). Other investigators (402) recorded

no increase in cerebral oxygen use with levarterenol or l-1-(meta-hydroxyphenyl)-

2-amino-propanol (metaraminol, Aramine#{174}) at continuous infusion rates which

produced pressor effects. Many sympathomimetics depressed oxygen use of

brain slices in vitro (446, 447). Minced brain tissue of rats used less oxygen if the

animal had been injected previously with epinephrine (184, 596).

A controversy revolved about the relation of epinephrine to cardiac efficiency.

Under some conditions it has been found that the oxygen use increased far

more than work. From the discussion of the problem by Green, Euler, and Moe

(239) it is evident that the controversy has not been resolved. An excessive oxygen

use out of proportion to the increased work has been shown in hearts of mammals

(240, and others) and of frogs and turtles (212, 352). A reduced efficiency of the

heart in the heart-lung preparation was found with N-phenyl-N-isobutyl-nor-p-
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sympatol and N-phenyl-N-butyl-norepinephrine, as well as with epinephnine

(230). The effect of epinephrine on cardiac oxygen use is controlled to some extent

by reflex activity for, when nervous reflexes were intact, there was less oxygen

use and less chronotropic and inotropic action (231). The increase in cardiac

metabolism was less in the innervated heart-lung preparation, and still less in the

heart in situ, than in the denervated heart-lung preparation. In the dog heart-

lung preparation veratramine, which antagonized the cardioaccelerator action

of epinephrine, did not interfere with the positive inotropic effect of epinephrine

nor with the effect of epinephrine which increased the oxygen consumption per

beat (327a).

Epinephrine or sympathetic stimulation increased the oxygen use of rhythmi-

cally contracting cardiac muscle (231a, 240,343), but epinephrine did not increase

the oxygen use of resting cardiac tissue (77, 260, 297). A fine demonstration of the

differences in the improvement of contraction by a cardiac glycoside and by

epinephrine was presented by Lee. He found that ouabain improved the force of

contraction of the rhythmically stimulated cat papillary muscle without modify-

ing the oxygen consumption (342). With epinephrine, however, increased oxygen

consumption accompanied the increased force of contraction (343). These results

showed that the cardiac glycoside improved the “efficiency” of the failing heart,

whereas epinephrine improved contraction without increasing the “efficiency.”

There is little evidence that a persistent increase in oxygen metabolism occurs

in skeletal muscle in parallel with the general calorigenic effect of epinephnine..

Several authors (62, 316) have recorded transiently increased metabolism in the

leg following an intra-artenial injection of epinephrine. This apparent increase in

oxygen use during the first few minutes is reminiscent of the “Initialzacke” re-

ported by Mertens and Rein (393a) in the intact animal. In intact animals the

transient large increase in oxygen use which follows the administration of

epinephrine has been attributed to the reoxygenation of “pooled” blood. How-

ever, B#{252}cherl and Schwab (62) measured venous return from the leg which

changed very little during the other recorded changes. Issekutz et at. (294) found

that epinephrine increased the oxygen consumption of perfused dog limbs when

constriction was prevented by dihydroergotamine. Griffith et al. (247) observed

no significant change after five minutes of intravenous infusion of epinephrine at

rates which increased lactic acid production and blood sugar. Since Lundholm’s

(370) results suggest that the calorigenic effect is related to blood lactate, more

prolonged infusions of epinephrine, until the calorigenic effect is at its peak (and

the hyperlacticacidemia is pronounced), should produce a more critical answer to

the role of muscle metabolism in the calorigenic response.

The oxygen uptake of rat diaphragms in vitro was not changed by epinephrine,

whether the epinephrine was injected into the animal prior to the removal of the

diaphragms, or applied in vitro (136, 573).

Few data are available on the effect of epinephrine on oxygen use of smooth

muscle. DeMeio (136) found that epinephrine increased oxygen consumption of

dog retractor penis and rabbit uterus, but not that of rabbit liver and rat dia-

phragrn. These observations may include the metabolic effects of epinephrine-
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induced contraction of the smooth muscles during the respiratory measurements.

Bulbning (63) observed an increased oxygen use in epinephrine-treated taenia

coli muscle of the guinea pig when the muscle tension was increased, but when

conditions were such that epinephrine reduced tension, there was, concomitantly,

a decreased oxygen consumption. The latter observation agrees with an earlier

report (453) that frog smooth muscle, when depressed by epinephrine, used less

oxygen.

The reduction of 2,3, 5-triphenyltetrazolium chloride has been used as an in-

direct measurement of tissue respiration. One hour after the administration of

epinephrine to intact, adrenalectom.ized, or hypophysectomized rats, the dye-

reduction method indicated a depressed respiration in lymph node, thymus,

spleen, liver and muscle (523). The authors made no attempt to interpret these

findings.

Oxygen utilization by the dog kidney was increased by epinephrine an average

of 60%, even though in four out of eleven tests epinephrine reduced the kidney

oxygen consumption (273).

2. Mechanism of the calorigenic effect. Considerable effort has been expended in

attempts to establish the mechanism of the calorigenic effect. In recent reviews

of the calorigenic action of epinephrine Lundholm (370) concluded that the

mechanism of the increased oxygen metabolism involved the hyperlacticacidemia

which increased tissue metabolism, but Griffith (244) attributed the calorigenic

action of epinephrine to a multiplicity of changes which include increased body

temperature, increased activity of cardiac and skeletal muscle, plethora of

blood glucose and lactic acid, and increased cellular metabolism.

Direct stimulation of tissue oxygen use in vitro has not been found regularly

except in a few specialized tissues (136, 145, 575). The early evidence for stimu-

lation or inhibition of oxidations by epinephrine in various tissue preparations

was reviewed by Griffith (244). A recent analysis of the inhibitions and stimula-

tions of isolated oxidative enzyme systems agreed with the early work of Green

and Richter (238), in that many of the observed effects were attributable to the

epinephrine decomposition product, adrenochrome, which may act as an inhibitor

of certain enzyme systems, and as an activator of other enzyme systems (448).

Restriction of skin blood flow by epinephrine causes a diminished heat loss and

an increase in body temperature which may account in part for the delayed

increase in oxygen use. This effect is prominent at moderate doses, but at higher

doses hypothermia results (192, 547) despite more intense vasoconstriction in

the skin. Whitcher and Griffith (585) found that, in intact cats, the temperature

increased in response to epinephrine, and that, in skinned cats, the temperature

decreased and the calorigenic effect of epinephrine was smaller. Since body

temperature fell in skinned cats in contrast to the rise in intact cats, it must be

concluded that constriction of skin vessels by epinephrine may raise the body

temperature by conserving heat and thereby may increase the calorigenic effect,

but that the skin itself must play only a secondary role in the calorigenic effect.

Isoproterenol increased oxygen consumption and body temperature in the rat

(577). This agent produces many of the effects of epinephrine, but it produced
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reddening, rather than blanching, of the skin. Since isoproterenol in these

experiments may have lowered blood pressure sufficiently to reduce blood flow
in the skin, this does not necessarily eliminate the factor of diminished heat loss

in the calorigenic effect.

Increased muscular activity as a result of the action of epinephnine on the

nervous system may be quite important in the calorigenic action. The absence

of the calorigenic effect, occasionally observed in anesthetized or curarized

animals, may thus be explained. A more specific action of certain general anes-

thetics on the action of epinephrine on metabolism was discovered by Lundholm

(370). He found that the anesthetics which reduced the calorigenic action also

reduced the rise in blood lactate in response to epinephrine. In common with

other pharmacological effects of epinephnine, extirpation of the sympathetic

nervous system did not reduce the calorigenic effect of epinephnine (345).

Epinephrine hyperglycemia does not coincide with the calonigenic effect

either in magnitude or in duration (47). Additional evidence against an im-

portant role of hyperglycemia in the calorigenic effect is the fact that certain

adrenergic blocking drugs which prevent hyperglycemia did not prevent’ epi-

nephrine hypermetabolism (360). Likewise, isoproterenol increased the me-

tabolism of the rat (577), but did not increase its blood sugar (175).

Lundholm (370) found a good correlation of the effects of epinephnine on

oxygen metabolism and on blood lactate. He also found that oxygen consumption

was increased in proportion to the elevation of blood lactate whether the hyper-

lacticacidemia was produced by epinephrine administration or by the intravenous

infusion of lactate. Numerous data on tissues in vitro indicate that lactate in-

creases the oxygen use of many different types of resting tissues. Elevation of

blood lactate in epinephnine-treated animals may explain the report of Issekutz

et at. (293) that plasma obtained from epinephrine-injected ducks increased the

oxygen use of duck erythrocytes obtained either from control or from epineph-

nine-injected ducks. A significant contribution to the mechanism of the calorigenic

effect of epinephrine might be made by a comparison of the oxygen use of various

tissues of an animal in control serum and in serum from epinephrine-injected

animals.

Whelan and Young (584) compared ten minute infusions of epinephrine and

norepinephrine and found that both amines stimulated respiration, but only

epinephrine increased oxygen metabolism. Elevated oxygen use persisted after

the infusion of epinephrine was discontinued. Beam et al. (25) did not find sig-

nificant increases in lactate until about 10 minutes after the start of similar rates

of epinephrine infusion. The combined data from the latter two groups of

investigators would be consistent with a relation between the elevated blood

lactate and the calorigenic effect. It must be recalled, nevertheless, that increased

oxygen consumption during the first few minutes may be a measure of the reoxy-

genation of the poorly oxygenated, pooled blood swept into the general circula-

tion by vasoconstrictor action (393a).

A recent argument against the lactic acid theory was the fact that, although

pigeons exhibited the usual carbohydrate changes with hyperglycemia and
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hyperlacticacidemia and rapid recovery of liver glycogen after a marked deple-

tion, there was no effect of epinephrine on oxygen metabolism in the pigeon.

Anotherexceptional finding, in the pigeon, is a severely depleted cardiac glycogen

four hours after the administration of epinephrine (483). In rats, cardiac glycogen

is found to be low only during the first thirty to forty-five minutes following

epinephnine. However, it does not appear that the result in pigeons can be

attributed to general anoxia because the liver glycogen after four hours had

risen far above the control level.

Brewster et al. (58) have presented evidence which appears contrary to a

relationship between the calorigenic effect and the elevation of blood lactate.

They found that the infusion of 1 ag/kg and mm of either epinephnine or

levarterenol increased the oxygen consumption of anesthetized dogs, but that at

this rate of administration only epinephrine increased blood lactate. The ob-

servations of Vleeschouwer et at. (564a) and Smythe et at. (506) also suggested

that for the calorigenic action in the dog levarterenol is as potent as epinephrine.

This is an important exception to the usual statement that epinephrine has a

much more potent metabolic action than levarterenol.

Some reports (292, 488) indicate no inhibition of the calorigenic effect of

epinephrine by dihydrogenated derivatives of ergot alkaloids when these alka-

loids were injected shortly before rather large doses of epinephrine. Ergot alka-

loids affix themselves to tissue receptors quite slowly even in vitro (393) so that

they must be given about one-half hour before epinephrine in order to produce

their maximum adrenergic blocking action. When Lundholm and Mohme (372)

gave ergotamine to guinea pigs twenty minutes before epinephrine, the calonigenic

effect was inhibited. Other investigators also reported that ergot derivatives

antagonized the calonigenic action of epinephnine (354,469). Antagonism between

ergot alkaloids and epinephnine is of the competitive type (393). An analysis of

the conificting results indicates that ergot alkaloids did not antagonize the

calonigenic action of large doses of epinephrine (292,488), and that these alkaloids

antagonized the action of small doses of epinephrine (354,372,469). The evidence

that the ergot alkaloids (and also yohimbine (397a)) can prevent both the

calonigenic effect and the hyperlacticacidemia adds further support to the

hypothesis that the elevated blood lactate causes the calorigenic effect of epi-

nephrine (226, 372).

3. Effect of related amines on oxygen metabolism of intact animals. The caloni-

genic potency in mice of d-epinephrine was only 34� that of epinephrine (2).

Estimations of the calorigenic potency of norepinephnine vary from a value

approximately equal to the potency of epinephrine down to about 34� the potency

of epinephnine (22, 26, 58, 135, 329, 371, 540, 548, 584). Continuous intravenous

infusion of levarterenol at a rate of 0.25 jig/kg and miii did not increase oxygen

consumption in man; epinephrine, when it was infused at a rate of 0.1 pig/kg and

miii, was effective (227, 454). Equivalent increases in oxygen consumption

were observed in dogs when either epinephrine or levarterenol was infused

intravenously at a rate of 1 pg/kg and miii (58). Since the amount of epinephrine

administered may be considerably above the amount required for the calorigenic
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effect, these findings may not represent equal potencies. Levarterenol in doses

which produced maximal cardiac effects in dogs caused only slight increases in

oxygen consumption (135). This evidence supports the viewpoint that the

cardiac effects of epunephrine contribute only a small amount to the total caloni-

genic action of epinephrine.

Isoproterenol increased the oxygen consumption of rats while their physical

activity was actually reduced. Body temperature was increased by isoproterenol

despite the pronounced skin dilatation (577). In man, nor-m-sympatol in a dose

of 10 mg did not affect oxygen utilization, but nor-p-sympatol showed a slight

effect at a dose of 60 mg (121). In comparable tests epinephrine in a dose of

0.3 mg increased oxygen consumption.

The effect of ephedrine on oxygen consumption in man was small and irregular

(93, 518). In dogs ephedrine in doses up to 1 mg/kg only lowered respiratory

exchange (137). Amphetamine in a dose of from 1 to 10 mg/kg increased the

body temperatures of rats (414). The following amines increased oxygen con-

sumption in rats in proportion to the increase in bodily activity: amphetamine,

methamphetamine, and N-methylcyclohexylisopropylamune (577).

Issekutz and Mur#{225}nyi (295) found that morphine-scopolamine anesthesia

prevented the usual increase in oxygen use which occurred after the administra-

tion of ephedrine or p-hydroxyphenylisopropylamune. Since the stimulation of

respiratory metabolism by epinephrine was only slightly reduced by this anes-

thetic mixture, the authors concluded the central nervous system effects ac-

counted for the stimulation of metabolism by ephedrune and p-hydroxyphenyl-

isopropylamine.

4. Sympathomimetic amities and the specific dynamic action of protein. Abelin

and Goldstein (3) obtained suggestive evidence that the specific dynamic action

of protein may be mediated by an excess production of sympathomimetic amines

which can be made metabolically from tyrosine. When they fed 200-300 g of

meat to human subjects and analyzed the subjects’ six-hour urine samples, they

found a markedly increased urinary excretion of hydroxytyramune, a small in-

crease in norepinephnine, and a very slight increase in epinephrine. Later evidence

(4) indicated a large percentile increase in the excretion of free and conjugated

epunephrine and a smaller percentile increase in the excretion of norepinephrine.

These observations may lead to a better understanding of the elusive mechanism

of the calorigenic action of protein. If there is, indeed, a common denominator

for the increased metabolisms in response to protein and to epinephnine, the

suggestion of Lusk, which induced Boothby and Sandiford (47) to change the

name of the epinephrine action on oxygen consumption from “specific dynamic

action” to “calonigenic action,” may have caused a long delay in relating the

two effects.

Tyrosine, in doses which did not influence blood sugar, potentiated epinephrine

hyperglycemia (85). A diet containing 10% of tyrosine increased the rat’s

blood sugar (389). This effect on blood sugar was intensified by the addition of

5% methionine to the tyrosine diet (442). Some additional results are applicable

to a consideration of the specificity of this effect. Phenylalanune (85) or d-alanine
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(427) did not potentiate epinephnine hyperglycemia. These results are of par-

ticular interest in the light of the findings of Abelin and Goldstein referred to

above.

VI. INORGANIC METABOLISM

1. Potassium. Potassium exchange in liver and muscle and epinephrine in-

fluences thereon have been reviewed by Fenn (202) and by Fleckenstein (205).

a. Blood potassium. A transient increase in plasma potassium occurs as a result

of intravenously administered epinephrune in animals (139, 140, 383, 494, 522)

and in man (57). Hyperkalemia occurred also after splanchnic nerve stimulation.

The response to sympathetic nerve stimulation depended upon the presence of

the liver. Since hepatic nerve stimulation produced hyperkalemia in adrenalec-

tomized animals, the adrenal glands were not essential for this response (277).

After the usual administration of epinephrine, however, hypokalemia has been

the more common finding (140, 278, 466, 528), especially in man (7, 75, 163, 313).

Until it was shown that, subsequent to the intravenous administration of epi-

nephrine, there was a transient rise followed by a more prolonged fall in plasma

potassium (57, 434), it was thought that potassium changes in man differed

from the changes which occurred in animals.

It is now established that the route of administration of epinephrine and the

elapsed time before a blood sample is obtained, rather than the species studied,

will determine whether an increased or a decreased plasma potassium will be

found. Immediately after an effective intravenous injection of epinephrine there

is a marked increase in the plasma potassium. Peak hyperkalemia occurs about

one minute after the injection of epinephrine and the potassium concentration

returns to the control level in three to five minutes (140). The potassium level

usually falls below the control level (“afterfall”) before the final return to the

resting level. Repetition of the hyperkalemic response was produced by epineph-

nine injections at three-minute intervals (142), but during a continuous infusion

of epinephrine, which sustained the hyperglycemia, the plasma potassium re-

turned to, or fell below, the control concentration (336, 464). Since there were no

significant changes in the blood concentrations of sodium, calcium, or magnesium

during epinephrine hyperkalemia, the potassium effect appeared selective (141,

384).

The liver has been established as the major source of the extra potassium in

epinephrine hyperkalemia (141, 384, 415). When epinephrine was injected into a
perfused cat liver, the same transient output of potassium occurred (141). It

was reported recently that the potassium concentrations of the non-particulate

fraction of the liver and of the hepatic mitochondria were reduced soon after the

administration of epinephrune (16). Marenzi and Gershman (384) demonstrated

that the following organs were not essential for epinephrine hyperkalemia:

digestive tract, spleen, kidney, thyroid, pancreas, adrenals, and carotid sinus.

They also showed that the hyperkalemic response was potentiated by cocaine

and was blockaded by ergotamine or yohimbine. When the liver was out of the

circulation, epinephrine caused a small increase in blood potassium (338, 415). In
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vascularly perfused dog lungs epinephrine released potassium, and this epineph-

nine effect also was inhibited by ergot alkaloids (256). It has not been demon-

strated that potassium release from the lungs contributes to epinephnine hypen-

kalemia in the intact animal.

Although the site of action for epinephnine hyperkalemia has been adequately

established, the mechanism by which potassium is released from the liver has not

been ascertained. Epinephrine is not the only substance which elicits this un-

usual type of transient hyperkalemia. It has been produced by other sympatho-

mimetic amines closely related to epunephrine (143, 278, 416, 504). Anoxia, ether,

barium chloride, and posterior pituitary extract also caused hyperkalemia

(140, 276). The latter treatments can induce sympathetic discharge. Indeed,

Houssay et at. (276, 278) reported that hepatectomy, adrenalectomy, or merely

adrenodemedullation prevented the hyperkalemic responses to posterior pituitary

and to tyramine, and reduced the response to ephedrine. Houssay and his

associates (276) emphasized three mechanisms in regard to increased hepatic

loss of potassium. These were: 1) epinephnine acts directly on the sympathec-

tomized liver, 2) several drugs act partially or completely through the sym-

pathetic innervation to the liver and to the adrenal medulla, and 3) hepatic

hypoxia as a result of decreased blood flow or of inadequate blood oxygenation

allows a loss of potassium from the directly impaired liver cells.

D’Silva considered the possibility that, since the laying down of tissue glyco-

gen is accompanied by potassium storage (202), epinephnine glycogenolysis must
result in hepatic loss of potassium. D’Silva’s investigation disclosed that epineph-

nine hyperkalemia occurred in animals with high or with very low hepatic glyco-

gen (142). Furthermore, his and other studies showed that the potassium and

glycogen concentrations of the liven were not directly related (141). Also, there

was no loss of potassium from muscles when epinephrine stimulated glycogenoly-

sis, but, on the contrary, potassium uptake was increased (225, 355, 383, 522).

Certain observations suggest that epinephrine hyperkalemia may be more

directly correlated with the vascular effects of epinephrine than with its glycogen-

olytic action. However, no clearcut interdependence of the hyperkalemic effect

with either the vascular or the glycogenolytic effect of epinephrine has been

established. Martin (387, 388) could not correlate the time characteristics on the

magnitude of epinephnine hypenkalemia with either its hyperglycemic or pressor

effects. In addition, the relative potencies of related sympathomimetic amines for

hyperkalemic action are quantitatively different from the relative potencies for

hyperglycemic action (143). After larger doses of epinephrine potassium rises

then falls at a time when blood glucose continues to rise (464). Continuous

intravenous administration of epinephrine allowed potassium to fall toward

normal during the infusion, but a quick injection superimposed on the infusion

caused a large rise in blood potassium (57). However, levarterenol infusions which

maintained a high blood pressure also maintained a slightly elevated plasma

potassium which decreased only after the end of the infusion (403). This differ-

ence in the duration of the hyperkalemic responses may be related to the fact

that norepinephnune limits, and epinephrine increases, hepatic blood flow (25,
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237). The continued hyperkalemia with norepinephrine could be caused by

hepatic anoxia, since it has been shown that a maintained hyperkalemia is

characteristic of any condition which severely depresses hepatic oxygenation

(521).

Some facts concerning the potassium metabolism of the liver are pertinent to

the present discussion of the possible mechanism of epinephrine hyperkalemia

and especially the effects of agents which produce severe, prolonged hepatic

vasoconstriction. Poor oxygenation of the liver, whether through hypoxia, blood

loss, or vascular occlusion, leads to a greater increase of potassium in the hepatic

vein than in other veins (521). The rise in hepatic vein potassium proceeds

slowly and is prolonged. With epinephrune the rise in hepatic vein potassium is

very rapid and transient so that anoxia cannot be the mechanism of this effect.

The ability of adrenergic blocking agents to prevent epunephrune hyperkalemia

supplied evidence which appears to relate the hyperkalemia more to the vascular

effect rather than the glycogenolytic effect. Thus, ergotoxine (140), engotamine

(494), dihydroergotamine (416), and also dibenamine (203, 416) prevented

epunephrine hyperkalemia. Since all these blocking agents antagonize the con-

strictor action of epinephrine, and since, with the exception of some of the less

commonly used chlorethylamine derivatives, only the ergot derivatives prevent

epunephnne hyperglycemia (253,323, 530), these data seem to lend no support to

the concept that the potassium release from the liver is related to glycogenolysis.

This interpretation of the evidence must be tempered by the fact that tests for

the blockade of epinephrine hyperkalemia and hyperglycemia by dibenamine

were done by different investigators and the techniques were different. Simul-

taneous determinations of the effects of dibenamine on the blood sugar and

blood potassium changes induced by epinephrune indicate that blockade of the

hepatic release of potassium is not accompanied by the blockade of glucose

liberation (180a).

If it were true that hepatic glycogenolysis is not necessarily associated with

hepatic loss of potassium, then glucagon, a substance with a selective action on

hepatic glycogenolysis and without cardiovascular action, would not be expected

to cause hyperkalemia. Glucagon, however, did produce a transient hyperkalemia

indistinguishable from the hyperkalemic response to epinephrine (593). Glucagon

also increased blood sugar, but it produced no effect on blood pressure. This evi-

dence supports a relationship of glucose production to potassium loss in the liver.

This relationship is not a simple one because of the very transient potassium

change and the long continued outpouring of glucose. The blood potassium was

above the control level during the time that blood glucose was rising. The peak

blood sugar occurred in about ten minutes when either glucagon (593) or epi-

nephrine (17) was given intravenously and, thus, the effect on the liver was

mainly dissipated by this time. This was also the duration of epinephrine action

on the denervated heart (170). Under comparable conditions it has been found

that the hepatic phosphorylase activity reached its maximal activity in thirty to

sixty seconds after the administration of epinephrune and returned toward the

control level within five or ten minutes (175a). The temporal changes in plasma
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potassium correlated more directly with the rapid increase in phosphorylase

activity and its less rapid decrease to the resting activity than with the blood

glucose changes or with the blood pressure effect.

It must be concluded that the mechanism of epinephrine hyperkalemia is

stifi problematical. It is not possible to define unequivocally the relationship

between the release of potassium from the liver and either hepatic glycogenolysis

or hepatic vasoconstriction. Although the available evidence suggests that

glycogenolysis may be the more important correlated event, the fact that

dibenamine can prevent the hyperkalemic response to epunephrine (and to

glucagon (180a)) without grossly changing the hyperglycemic response remains

as a strong objection to this simple relationship.

Epinephrine hypokalemia has been attributed to an increased uptake of po-

tassium by muscle (383, 522) and also by the liver, which begins to store po-

tassium immediately after its primary release of potassium (56, 141, 383).

Potassium retention by muscle in vitro has been observed as a direct response to

epinephnine and related amines (225, 355, 419, 522). It has been suggested that

the accumulation of hexosemonophosphate is responsible for the tissue retention

of potassium which is drawn from the plasma (113, 355).

Since pancreatectomy almost eliminated the “afterfall,” D’Silva (140) con-

cluded that potassium uptake is activated by the reflex discharge of insulin.

This observation could not be confirmed (336). Contrariwise, it has been claimed

that insulin hypokalemia is a “reflex” response dependent upon the presence of
a4renal medulla (169). Later studies, however, showed that either epinephrine or

insulin produced hypokalemia in adrenalectomized-alloxanized rats (160). The

epinephnune hypokalemic effect was not dependent on the presence of the ad-

renal or pituitary glands (169).

The hypokalemic effect of epunephrine may be used to lower the hyperkalemia

which accompanies glucose administration to adrenalectomized or adreno-

medullectomized rats (157), or benzene poisoning in rabbits (365). It is possible

that a blockade of epinephnune action on potassium metabolism accounts for the

observation (551) that ergotamine sensitized rats to potassium poisoning.

Glucose administration to adrenalectomized rats induced a crisis which was

fatal to some of the experimental animals. The crisis was associated with hyper-

kalemia and cardiac failure. Pretreatment with epinephrine was lifesaving.

Dury (157, 158) places considerable emphasis on the hyperkalemia as a possible

cause of death. The lethal blood potassium levels were only 6-7 mEq./l, but

adrenalectomized animals are notably less resistant to stress. Since the surviving

animals had much higher blood sugar levels, but lower potassium levels, than

those which were obviously dying, it is possible that the hyperkalemia of the

fatally affected animals was a response to cardiovascular failure and subsequent

hepatic anoxia and loss of potassium. In those animals which did not show the

acute effect, sympathetic reflex activity was sufficient to support the circulation

and to cause a rise in blood glucose and a fall in plasma potassium.

The following hyperkalemic potencies of some sympathomimetic amines rela-

tive to the hyperglycemic potency of epinephnine were derived from the reports
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of D’Silva (143), O’Brien et at. (416), and Siebens et at. (504): epinephnine, 1;

d-epinephrine, 3�; dl-norepinephrune, 3/� (143) or lower (504); dl-cobefrine, 34�;
dl-N-methylcobefrine, 34�; epinune, 34o; phenylephrine, much less than 34o;

ephedrine, less than 34ooo; methadren, sympatol, tyramune, ephednune, phenyl-

ethanolamine (143) and aranthol (2-methyl-6-methylamino-2-heptanol) (416)

were inactive.

b. Tissue potassium. Muscle. When epunephrine was administered intra-

venously, there occurred a temporary improvement of muscular contraction and

an elevation and a subsequent fall in demarcation potential. These changes indi-

cated that muscle potassium may increase temporarily and then may fall below

the resting level. Experiments in vitro have shown that potassium loss from

muscle is reduced for ten minutes or more after the administration of epinephrine,

or of related amines, and then potassium loss is increased (225). Epinephnine also

reduced the loss of potassium from frog muscle in vitro (355). Direct determina-

tions of muscle potassium during the period of hyperkalemia have not been
made. However, an increased uptake of potassium by muscle occurred during

epinephrine hyperkalemia (383, 522). After the subcutaneous administration of

epunephrine to intact animals the muscle potassium was reduced at thirty to

sixty minutes (165, 528) and muscle potassium had increased above control

levels in two to four hours (394, 528).

Liver. Shortly after the intravenous administration of either epinephrine or

norepinephrine the hepatic concentration of potassium was diminished (16).

These sympathomimetic agents caused a marked loss of potassium from the

supernatant fraction of hepatic tissue and, in addition, epinephrine reduced the

potassium concentration of hepatic mitochondria. One hour after the subcu-

taneous administration of epinephrune liver potassium tended to be above the

control level (165).

On the basis of the available experimental evidence a tentative summary

of the effects of epinephrine on body potassium may be given. The potassium

shifts which occur after the intravenous administration of epinephrine are a rapid

transfer of liver potassium into the blood plasma and thence to muscle. The

potassium changes which occur somewhat later after subcutaneous administra-

tion of epunephrine are a transfer of some muscle potassium to the liver during

the hypokalemic phase. During the period of hypokalemia, blood sugar is high,

liver glycogen is at its minimal level, and muscle glycogen is diminishing pro-

gressively. After a few hours, when muscle glycogen is at its lowest level and

liver glycogen is at, or above, the resting level, muscle potassium is restored to,

or is above, the resting level.

Fenn (202) and Fleckenstein (205) have reviewed the evidence that potassium

liberated from muscle during contraction may be taken up rapidly by the liver,

and, conversely, potassium released from the liver may be absorbed rapidly by

muscle. Marenzi and Gerschman (383) showed that in the anesthetized animal

at rest there was a loss of potassium from muscle and a withdrawal of potassium

into the liver. The process was reversed during epinephrine hyperkalemia which

involved a rapid potassium output from the liver and an almost equally rapid
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storage in muscle. Thus, the potassium cycle, like the lactic acid cycle, may be

influenced by epinephrine.

Fenn (202) suggested that epinephrine effects on tissue potassium may play a

physiological role during exercise when epinephrine may liberate hepatic potas-

sium to replenish muscle losses. This might be an aid to physiological economy

during a short, extreme burst of muscular activity. Another action of epinephrine

is to reduce the loss of potassium from muscle and to increase the hepatic storage

of potassium. The latter effects may be of importance for maintaining relatively

normal potassium distribution during prolonged muscular exercise.

Heart. A single large dose of epinephrine decreased the potassium and in-

creased the sodium concentrations in the heart, but when epinephrine was

administered by continuous infusion, cardiac potassium was increased (464). In-

creased loss of potassium at the height of the stimulating effect of epinephrine or

norepunephnne must be considered a non-specific effect of increased activity until

it can be shown that a similar change is not induced by other kinds of stimulation

(392).

Smooth muscles. Continuous infusion of norepinephrine, to sustain a 100 mm

rise in blood pressure, caused a loss of potassium and some gain in sodium of the

femoral artery (542). It is not known whether these electrolyte changes were the

result of constriction, or selective effects of sympathomimetic activity. Con-

traction of rabbit uterine strips induced by norepinephrine, but not by acetyl-

choline or histamine, resulted in potassium loss from this tissue (127). When the
taenea coli muscle of the guinea pig was treated with epinephrine, the radioactive

potassium effiux was either unchanged or somewhat increased and the potassium

influx was increased (47a).

Erythrocyte. Epinephnine did not affect potassium influx in human red cells

(304).

2. Sodium. D’Silva (141) reported that epinephrine caused no significant

change in plasma sodium at the time when the potassium level was doubled. This

observation has been confirmed by others (384). During epinephnine hypo-

kalemia, Dury and Moss (165) found no significant fall in plasma sodium but a

moderate increase in muscle sodium. In patients, there were no changes in sodium

during epunephnine-induced hypokalemia (163). Infusions of levarterenol, which

maintained a high blood pressure and an elevated plasma potassium, caused a

fall in serum sodium, which, after the infusion was terminated, recovered to the

normal level more slowly than did the serum potassium (403). Dury and Tread-

well (167) reported that epinephrine elevated plasma sodium in rats. However,

Eversole et at. (199) found that serum sodium in the rat was elevated by nor-

epinephnine and not by epinephrine.

Available evidence on the rate of passage of radioactive sodium out of the

blood stream and on the rate of removal of sodium from tissues indicates that

physical factors of pressure, ifitration, etc., rather than metabolic effects, are

involved. The rate of loss of NaU from the plasma (261) either was unchanged,

or was actually reduced, by epinephnine. After intra-arterial Na24, which produced

a local extravascular Na24 pool, epinephnune accelerated the nate of removal of

the radioactivity from the region (152).
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3. Cakium. During epunephrune hyperkalemia there was no significant change

in plasma calcium (141, 384). However, Volimer (565) found a slight increase in

blood calcium concomitant with a decrease in blood potassium and phosphate.

A slight elevation of serum calcium was also observed after the administration

of epinephnne to patients with diabetes (421) or with glaucoma (444). During

the prolonged hypokalemia and hypophosphatemia, which occurred with sub-

cutaneous epinephrine, blood calcium and citrate were elevated (440). The rise

in citric acid intermediates might explain the earlier observation that epinephrine

did not change the total serum calcium, but did increase the ultrafiltrable cal-

cium of the serum (341).

Epinephnine had no action on the calcium exchange of frog muscle in vitro

(419).

.4. Magnesium. Marenzi and Gerschman (384) found no early change in

blood magnesium in response to epinephnine.

5. Iron. The literature on epinephrine hypoferremia in animals was reviewed

by Laurell (340). In humans the response to a large dose of epinephrine con-

sisted of a slight increase in serum iron for 15 to 30 minutes (21, 420), followed

by a moderate fall in serum iron for one to three hours (21, 502). The spleen

appears to play a role in epinephrine hypofenremia. In splenomegaly the reduc-

tion in serum iron by epinephrine was intensified; after splenectomy there oc-

curred only a slight rise in serum iron (502).

Some doubt is cast upon the validity of the reported hypoferremia in humans

by the finding of a diurnal variation in serum iron (429). Epinephrine caused no

greater hypoferremia in daytime tests than the hypoferremia which occurred in

the absence of specific treatment. During nocturnal hypofernemia epinephnune

was without action on serum iron (429).

Studies with radioactive iron, Few, indicated that epinephnine increased the

disappearance from the blood of Fe59 whether this was injected as Fe59Cl3 or

Fe59�1-globulin. Concomitantly, Fe59Cl3 was taken up more rapidly into liver,

kidney, and lungs, and more slowly into spleen and muscle (261).

6. Chloride. Earlier work indicated that epinephrine reduced blood chloride

(see 379). In rabbits given epinephrine subcutaneously, Lipschitz (356) observed

a slight increase in blood chloride. This effect of epinephrine was blockaded by

ergotamune. No significant variation in blood chloride was found in the more

recent studies which have been summarized by MacVicar and Heller (379).

These investigators and Jacobson et at. (298) presented further evidence that

blood chloride is essentially unchanged by epinephrine. However, there have

been additional observations that epunephrine reduced plasma chloride in rats

(165) and in rabbits (151). When levarterenol was infused at a rate which

maintained a high blood pressure, plasma chloride increased about 5 mEq./l

(403). The effects of epunephrine on blood chloride are small, and the direction

of the change is uncertain.

7. Phosphate. Since the early observations of Penlzweig et at. (435), of Tolstoi

et at. (543), and of Vollmer (565), there has been rather general agreement that

the administration of epinephnune leads to a lowering of serum phosphate in

animals (20, 284, 379, 491, 580), and in man (20, 433, 435, 543, 565�.
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With the use of �32 it was found that the transfer of phosphate from plasma

to liver and muscle was accelerated by epinephrine before the total plasma

phosphate showed a significant fall (261). More rapid removal of �32 from the

plasma under the influence of epinephrine has been confirmed (161), and in this

study the specific activities of the phospholipides of plasma, liver, and aorta

were increased. In an earlier investigation of the effect of epinephrine on the

rate of elimination of radioactive phosphate from plasma, no difference from the

control was observed (580). The time of sampling in the latter study may have

been too late to observe a change.

In the search for the accumulator of the phosphate which leaves the plasma

the kidneys were ruled out by the fact that the excretion of phosphate was

diminished by epinephrine (6,435). Epinephrine reduced the inorganic phosphate

and did not change the total phosphate of the erythrocytes (379). The liver also

has been ruled out (410). Cori and Cori (110) proposed that epinephrine, by

reducing the inorganic phosphate content of muscle, caused the withdrawal of

plasma phosphate into muscle. Small increases in muscle phosphate were found

(394), but as Nelson et at. (410) pointed out, muscle contains one hundred times
more phosphate than the blood and, with ordinary analytical techniques, it

would be difficult to detect the transfer of this relatively small total amount of

blood phosphate into the large mass of muscle phosphate. Although it has not
been demonstrated that the epinephnine-treated muscle in vitro takes up more

phosphate, epinephrine did reduce the normal loss of phosphate from frog

muscle (355, 419).

A mechanism for withdrawal of phosphate from the plasma into muscle cells

might involve the direct effect of epinephrine on muscle in which hexosemono-

phosphates are increased at the expense of inorganic phosphate (257). In support

of epinephrine acting directly and not through the intermediation of insulin, it

was observed that there was no effect of insulin on muscle hexosemonophosphate

in adrenalectomized animals (110, 514). Another point in favor of a direct action

of epinephrine on muscle as a cause of the hypophosphatemia was the observa-

tion that, in a muscle disease involving a defect in muscle glycogenolysia, epi-

nephnine produced a normal hyperglycemia, a poor hyperlacticacidemia, and

little change in serum phosphate (374).

A mechanism for epinephrine hypophosphatemia which would involve the

reflex release of insulin is supported by the observation that epinephrine did not

reduce plasma phosphate in depancreatized dogs (45, 514). Also compatible with

an insulin release mechanism is the fact that hypophosphatemia occurred in

adrenalectomized animals in response to either insulin or epinephrine (111, 182,

514). Nelson et at. (410) came to the conclusion that the hypophosphatemias in re..

sponse to epinephrine and to insulin were independent effects, since they found a

large increase in total phosphate of the liver in response to insulin, and only a

slight increase in response to epinephrine. Some facts concerning phosphate and

glucose assimilation in muscle and epinephrine effects on muscle would be more

in accord with an indirect effect of epinephrine on phosphate metabolism. Phos-

phate is taken up by muscle in conjunction with glucose uptake. Since epineph-
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nine depresses glucose assimilation in muscle, this effect may be more important

in reducing phosphate assimilation than the effect of epinephrine which di-

minishes muscle inorganic phosphate and thus increases the diffusion gradient

for inorganic phosphate.

Schrire (491) attributed some importance to the pituitary in epinephrine
hypophosphatemia since he observed no change in phosphate in hypophysecto-

mized Xenopus taevis. The significance of this observation is obscured by the low

phosphate in the control hypophysectomized animals. In hypophysectomized

dogs Soskin et at. (514) observed that epinephrine lowered blood phosphate, and

Ichijo (284) found that epinephrine produced smaller changes in phosphate,

glucose, and lactate in his hypophysectomized dogs than in his control dogs.

Levarterenol had less effect on blood phosphate and on carbohydrate metab-

olism than epinephrine (258). Large doses of nor-sympatol increased blood

phosphate (529).

Tissue organic phosphates. After two hours of epinephrine infusion at a rate of

17.7 pg/kg and hr, canine hearts contained less than the normal amount of

adenosinetriphosphate and a slighty increased amount of phosphocreatine (404).

The excessive work of the heart and a relative oxygen deficiency, rather than a

specific effect of epinephrine, may account for these findings. Previous studies on

muscle phosphates indicated that the primary changes were a decreased inor-

ganic phosphate, an increased hexosemonophosphate, and little change in

phosphocreatine or in adenosinetriphosphate (99).

8. Water and electrolyte metabolism in tissues. Frog skin transfers water to

within from a solution containing 6.5 % sodium chloride. Epinephrine prevented

and reversed the direction of active water transport (72). These observations

explain in part the increased loss of body water by intact frogs which were

treated with epinephrine (53). The imbibition of water by slices of various

frog tissues was diminished by epinephnine (15).

Application of epinephrine to the inner surface of frog skin caused a greatly

increased efflux of sodium and a slightly increased influx (321, 554). Epinephrine

also increased the transfer of chloride from the inner to the outer surface of frog

skin (301). The increased efflux of chloride (320) was later thought “to be per-

formed by the skin glands which start secreting under the influence of adrenaline”

(555).

The various effects of epinephrine on water and sodium changes summarized

above suggest that epinephrine may have a general effect which causes the

active transport of sodium and water out of the cell.

In adrenalectomized rabbits, epinephrine restored the ability of the ciliary

processes to concentrate acid dyes in the stroma and basic dyes in the epithelium,

and changed toward normal the rate of regeneration of intraocular fluid (210).

Inhibition of histamine-induced gastric secretion by epinephrine or nor-

epinephrine may be due to the vascular effects rather than to a specific action

on the secretory mechanisms (208).

The complex effects of epinephrine on water and electrolyte metabolism in
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the kidney have been reviewed by Verney (558), Pickford (437), and Selkurt

(496).

VII. INTERACTIONS OF EPINEPHEINE AND OTHER HORMONES

1. Interactions of epinephrine and insulin in carbohydrate metabolism. One

report indicated that the calorigenic action of epinephnine was greater in dia-

betics than in normal subjects or in insulin-treated diabetics (272), but another

group reported that the calorigenic effect was the same in diabetic as in normal

subjects (263). Epinephrine hyperglycemia in diabetic patients was discussed in

section I, A, 1, c.

Insulin antagonized the early fall in liver glycogen as well as the rise in blood

sugar of rats treated with epinephrine (116). Lundsgaard et at. (373) found

that in perfused rabbit livers insulin did not antagonize the epinephrine-induced

increase in glucose output. This preparation also did not show an increased glu-

cose uptake with insulin (except in one out of 10 experiments), so that insulin

would not be expected to antagonize epinephnine. Similar results were obtained

by Ambrus et at. (11) who studied perfused canine livers. The reason for the

inability of recent investigators to reproduce some earlier demonstrations of in-

sulin epinephnine antagonism in the liver is not evident (48, 290, 291).

Cori suggested (98) that epinephnine counteracts insulin hypoglycemia in

large measure by antagonizing the effect of insulin on glucose utilization. The

reduced peripheral utilization supplements the epinephnine-induced elevation of

hepatic glucose production. Epineph.rine, in this manner, elevates the blood

glucose which is the main fuel for the central nervous system. Later, Cori and

Buckwald (103a) demonstrated epinephrine-insulin antagonism on frog muscles

under aerobic and under anaerobic conditions. The antagonism has been demon-

strated also with mammalian striated muscle (54, 176,461,550,569). Antagonism

between epinephrine and insulin on muscle glycogen changes in the absence of

exogenous glucose would raise important questions concerning the sites of action

of each of the hormones. It was reported (461) that insulin antagonized the

glycogenolytic effect of epinephrine on the rat diaphragm suspended in a glucose-

free medium, but other investigators (176, 550) could not confirm this finding.

Experiments on rat diaphragms, in which the insulin concentration was varied

over a wide range and the epinephnine concentration was kept constant, indi-

cated that the antagonism is not a simple one. The conjoint effect of the two

agents is not the arithmetic sum of the individual effects, nor is it explained by a

decreasing effectiveness of epinephnine with the increasing concentration of

insulin. The percent inhibition of the insulin effect by epinephnine was about the

same although the insulin effect on carbohydrate metabolism was increased

four-fold (68). When the effect of epinephrine on glucose uptake was tested in

low and in high concentrations of glucose, the percent inhibition also remained

constant (569).

The glycogen content of adipose tissue in the rat responded to insulin and to

epinephrine in the manner characteristic of the glycogen of the liver. The effects

of epinephnine and insulin on adipose tissue glycogen appeared to be antago-

nistic when the two were administered conjointly (549).



METABOLIC EFFECTS OF EPINEPHRINE AND RELATED AMIXES 533

Bouckaert and de Duve (51) reviewed epinephrine-insulin antagonism on

carbohydrate metabolism. They call attention to the curious fact that each of

these antagonists increases the cellular concentration of hexosemonophosphate

which plays a central role in the absorption of glucose and the disposition of

glycogen. Some of the more recent contributions on insulin-epinephnine an-

tagonism were discussed by Weil-Malherbe (578).

2. Epinephrine and adrenocortical hormones. a. Carbohydrate metabolism.

Adrenal cortical hormones are important for some of the common responses to

epinephnine. Reference was made to some of these hormonal interactions in

previous sections of this review.

An early indication of the importance of the adrenal gland for the action of

epinephnine on carbohydrate metabolism was Eiselt’s report (173) that epineph-

rine glycosuria did not occur in patients with Addison’s disease. Several later

investigators found that in adrenal cortical insufficiency there was a diminished

hyperglycemic response to epinephrine (41, 92, 185, 473), but there occurred a

greater fall in muscle glycogen (92, 591) associated with a normal epinephnine

hyperlacticacidemia (41) and almost no rise in blood pyruvic acid (489).

In adrenalectomized rats, epinephrine frequently increased the metabolism

and body temperature (462). This observation and the observation that epineph-

rime elevates blood lactic acid normally in adrenalectomized animals are interest-

ing in view of the hypothesis that the calorigenic effect is a result of the hyper-

lacticacidemia (370). There is normally a rapid resynthesis of glycogen in the

liver during the course of events which follow the administration of epinephrine.

This resynthesis of glycogen in the liver was impaired in adrenalectomized rats

(591). However, liver glycogen formation was increased by epinephrine in

alloxanized-adrenalectomized rats whici’ were given glucose (546). Cortical

hormones administered to normal, adrenalectomized, or hypophysectomized rats

antagonized epinephrine glycogenolysis in certain muscles (591, 597). In the

above experiments cortisone, through two of its accepted actions, might appear to

antagonize epinephrine glycogenolysis. Cortisone increases gluconeogenesis.

Cortisone also potentiates epinephrine hyperglycemia and, thus, it may increase

glucose uptake by muscle. Contrariwise, desoxycorticosterone potentiated

epinephrine on muscle glycogenolysis in intact or adre.nalectomized rats (538).

Desoxycorticosterone possesses little of the glucocorticoid activity of cortisone

and desoxycorticosterone was found to activate muscle glycogenolysis (54).

Adrenal steroids appear more important for maintaining a normal concentra-

tion of glycogen in the liver, whereas pituitary hormones appear to be the

important factor for maintaining muscle glycogen (187, 361). With this evidence

at hand, the effects of absence or plethora of adrenal glucocorticoids on muscle

glycogen can be considered an indirect effect. The absence of the adrenals di-

minishes epinephrine hyperglycemia and does not appear to influence epinephrine

hyperlacticacidemia. Therefore, the increased loss of muscle glycogen which

follows epinephnine in adrenalectomized animals may be the result of a reduced

blood glucose which, in the adrenalectomized animal, does not compensate for

the epinephrine glycogenolytic effect in muscle. A similar interpretation would

account for the antagonism of glucocorticoids toward epinephrine glycogenolysis
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in muscle on the basis of the potentiated epinephrine hyperglycemia in corticoid-

treated animals.

Kenpolla (311) has made the most interesting observation that daily doses of

cortisone for 7 days increased liver and muscle glycogen and decreased the

phosphorylase activities in these tissues. Since epinephrine reactivated the en-

zyme inhibited by cortisone, it would appear that cortisone did not change the

total amount of phosphorylase. An earlier investigation (326) showed that the

adrenal hormones depress liver glycogenolysis. If the depression of phosphorylase

activity by cortisone (311) is involved in the above experiments, the increased

percentile activity of phosphorylase, which occurs when epinephnine is given,

would be expected to potentiate, rather than suppress, epinephrine glycogenoly-

sis. This would be in accord with the potentiation of epinephrine hyperglycemia

by cortisone. It has not been determined whether epinephnine hyperlacticaci-

demia is also potentiated. The absence of the adrenal gland, however, did not

diminish the blood lactate rise in responses to epinephrine (41).

b. Potassium metabolism. Epinephnine hyperkalemia was depressed in adre-

nalectomized cats, but the magnitude of the hyperkalemic response appeared to

be inversely related to the plasma potassium level (561). The resting level of

plasma potassium is not always a controlling factor in epinephrine hypenkalemia.

When cardiac glycosides elevated the plasma potassium, there was little effect

on the magnitude of the epinephrine hyperkalemia (391). Furthermore, treat-

ment of adrenalectomized cats with desoxycorticosterone partially restored the

hyperglycemic and the hyperkalemic responses to epinephnine (561).

In adrenalectomized animals epinephrine reduced the elevated blood potas-

sium to a normal level (169, 466).

c. Adrenal ascorbic acid depletion by sympathomimetic amiss. It is now a well-

established fact that epinephrine reduces the concentration of ascorbic acid and

of cholesterol in the adrenal glands (362). The changes in the adrenals have

been attributed to the release of adrenocorticotropin (ACTH) from the pituitary

gland (218, 438). Recently, McCann and Brobeck (375) produced hypothalamic

lesions which prevented the pituitary-adrenal stimulation by epinephrine. Thus, a

direct action of epinephnine on the pituitary, or on the adrenal cortex, appears

unlikely. With relatively large, intravenous doses of epinephnine, elevation of

blood ACTH has mow been demonstrated (200). Ordinary doses of epinephrine

increased plasma 17-hydroxycorticosteroids in about one-third of the trials (282).

However, methods for determining ACTH and cortical hormones in blood have

been so inadequate that the present evidence based on these measurements is

not considered to be reliable (390, 485).

There is little information on the mechanism of the ascorbic acid depletion

which has been associated with activation of the adrenal cortex. Some mis-

cellaneous observations on epinephrine effects may be related to the adrenal

ascorbic acid change. A glycogen depletion of the adrenals follows the adminis-

tration of epinephrine (412). The administration of epinephrine caused a deple-

tion of blood ascorbic acid which ran a time course similar to that of the reported

adrenal ascorbic acid depletion (224). Does the blood change cause, or is it a

result of, the adrenal change? Ascorbic acid depletion is not a general effect of
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epimephrine on tissues in view of the fact that hepatic ascorbic acid was not

affected by epinephrine (480).

Some recent observations on the effects of glucagon, a substance which mimics

the hepatic glycogenolytic effect of epinephrine, again raise the question as to

whether the activation of the pituitary-adrenal system by epinephrine is a direct

influence on the hypothalamo-pituitary system or an indirect action brought

about through changes in blood composition (362). It has been reported that

glucagon, like epinephrine, depleted the ascorbic acid content of the adrenal

glands (118), and that intravenously administered glucagon produced a transient

hyperkalemia followed by a more prolonged hypokalemia (593). The implica-

tions of these observations for the problem of the mechanism of activation of the

pituitary-adrenal system are obvious.

Adrenergic blocking agents depress the ascorbic acid-depleting effect of epi-

nephrine on the adrenals (248, 417, 467, 503). Whether this is a blockade of a

direct action of epinephrine on the hypothalamo-pituitary system, or an indirect

effect brought about by blocking the hyperglycemic, the hyperkalemic, or other

effects of epinephrine, is still uncertain.

There is some disagreement concerning the potency of levarterenol relative to

epinephrine in reducing adrenal ascorbic acid. Three groups of investigators

found that levarterenol was much less potent in regard to this action than epi-

nephrine (199, 409, 467). These results would agree with the lesser potency of

levarterenol in reducing the eosinophiles in man (281). Chen et at. (82), however,

reported that epinephrine and levarterenol were of equal potency in the adrenal

ascorbic depletion test. The explanation for these conflicting data is not evident.

The latter investigators also reported that isoproterenol is as potent in depleting

adrenal ascorbic acid as the other two amines. Paredrine was effective in depleting

adrenal ascorbic acid in intact rats (417), and hypophysectomy prevented this

action of paredrine (418). Ephedrine was not effective (417), but amphetamine

produced a prolonged depletion of adrenal ascorbic acid (409).

The relative doses of epinephrine, levarterenol, and sympatol which produced

similar depletions of adrenal ascorbic acid are 1:4.5:1200 (409). (The ratios of

1:45:1200 which are in the discussion and also in the summary of the paper are

in conflict with the data and are apparently misprints.) These ratios are unlike

the relative pressor potencies which are 1:0.4:200 in the rat (409), but they are

similar to the relative hyperglycemic potencies (175).

8. Interactions of epinephrine and pituitary hormones on metabolism. Epineph-

rime caused less hyperglycemia in hypophysectomized animals than in normal

animals (92, 96, 130, 274, 284, 472, 473). Removal of the neurohypophysis alone

did not affect epinephrine hyperglycemia (130). A reduced hyperglycemic

response to epinephrine occurred in hypophysectomized animals when liver

glycogen was normal (130, 471). Houssay and Gerschman (274) showed that the

difference in blood sugar response was not due to a change in sensitivity of the

liver to epinephrine. Since the administration of cortisone to hypophysectomized

animals restored epinephrine hyperglycemia toward normal values, it appeared

that the principle deficiency was in adrenal cortical function (131).

In fasting hypophysectomized rats, cortical hormones restored the levels of
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blood sugar and of liver glycogen toward normal, but they failed to increase

muscle glycogen (361). Although it has been reported that epinephnine has less

action on muscle glycogen in hypophysectomized rats (92), Leonard (348) found

that epinephrine produced similar percentage decreases of muscle glycogen in

normal and in hypophysectomized rats. Growth hormone reduced the effect of

epinephrine on the glycogen content of certain muscles in hypophysectomized

(348), but not in intact, rats (349). In hypophysectomized rabbits, there was a

normal increase in blood lactate in response to epinephnine (96). A normal hypen-

lacticacidemic response does not appear consistent with a smaller glycogenolytic

effect of epinephrine on muscle in hypophysectomized animals. Some of the

discrepancies in the reports on the effects of epinephnine on muscle glycogen and

on blood lactate in hypophysectomized animals may be attributed to differences

in muscle glycogen between fasted and fed animals. Muscle glycogen may be

normal in well-nourished hypophysectomized animals, but a fast of only four

hours depleted muscle glycogen in these animals (472).

Some of Cohen’s (87, 89) results may be explained by these facts. He found

that, when epinephrine was injected into fasted rats, there was a diminished

glycolysis in the diaphragms subsequently tested in vitro. Adrenalectomy did not

change the results, but hypophysectomy completely eliminated the inhibition of

glycolysis by epinephrine. The elimination of the muscle response to epinephrine

by hypophysectomy is in keeping with the reduced glycogenolysis and lesser

increase in hexosemonophosphate found in the muscles of fasted, hypophysecto-

thized rats (460, 472).

Kepinov (307, 309) has postulated that a pituitary hormone is required for

epinephnine to be taken up by, and to cause glycogenolysis in, the hepatic cells.

He was unable to demonstrate that epinephrine increased glucose production in

perfused livers unless a pituitary extract was added to the fluid perfusing the

liver.

Epinephrine produced a smaller increase in oxygen use in patients with

Simmond’s disease than it produced in normal subjects (272). Epinephnine stim

ulated the oxygen use and glucose consumption of anterior pituitary tissue of

rats, but it did not affect posterior pituitary or hypothalamic tissues (463).

4. Interactions of epinephrine and sex hormones on metabolism. Epinephrine

caused greater hyperglycemia in women than in men (189). In normal men and

women the heterologous sex hormone slightly potentiated epinephnine hyper-

glycemia (317). Progesterone did not modify the effect of epinephrine on muscle

glycogen (538), but testosterone antagonized this effect (597).

5. Interactions of epinephrine and thyroid hormone on metabolism. There is ade-

quate justification in the literature for the generalization that the magnitude of

most of the pharmacologic actions of epinephrine are regulated by the amount

of thyroid hormone in the body. Thyroidal control of several metabolic effects of

epinephrine has been observed by numerous investigators.

Thyroid administration to normal animals increased epinephrine hypergly-

cemia (64, 548). Thyroidectomy reduced epinephrine hyperglycemia, and the
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response was restored to normal when thyroid hormone was administered (94, 95).

In a few studies no effect of thyroidectomy on epinephnime hyperglycemia was

detected (92, 217). It is not known whether the latter observations were due to

differences in species, to incomplete removal of thyroid tissue, or to other experi-

mental variables. Some explanation is also needed for the inability of thyroid

hormone to increase the hyperglycemic response to levarterenol, especially since

epinephnine hyperglycemia was potentiated (548). Chronic administration of

thyroid to rabbits reduced epinephnine hyperglycemia by depleting liver glycogen

(64). Rabbits were more sensitive to this hepatic effect of thyroid than were dogs

and cats (1). This action of thyroid hormone would make the amount of thyroid

administered and the duration of the treatment critical in some species for

demonstrating a potentiation of epinephrine hyperglycemia.

The effect of epinephrine on muscle glycogenolysis was increased by the ad-

ministration of thyroid (92, 348) and was reduced by thyroidectomy (92, 348,

349, 538). The related effects of thyroid hormone on epinephrine hyperlacticaci-

demia should be investigated. Since the Con lactic acid cycle is very important

in the hyperglycemia effect and since Lundholm’s (370) hypothesis relates the

calorigenic effect to the hyperlacticacidemia, the influence of thyroid hormone on

the hyperglycemia and the calorigenic effects of epinephrine might thus be

explained.

The calorigenic effect of epinephrine was greatly diminished by thyroidectomy

(2, 146, 541) and was increased by thyroid administration (146, 147). The calori-

genic effect of epinephrine was greatest in hyperthyroid patients and least in

hypothyroids (272). De Visscher (146) suggested that the calorigenic effect of

epinephrine was limited by the availability of thyroid hormone. Epinephrine

caused greater increases in the rate and oxygen consumption of thyroxine-treated

terrapin hearts (377). In white rats diiodotyrosine also increased the effect of

epinephrine on oxygen consumption (147).

Comsa (94, 95) found that thyroidectomy reduced and thyroid administration

increased the following responses to epinephrine: increased creatine excretion,

reduction of blood cholesterol, and hyperglycemia.

Brewster et al. (58) postulated that many of the effects which occur after the

administration of thyroxine were merely sensitizations to adrenergic stimuli.

This concept was based upon the experimental observation that when total

sympathetic blockade was produced by epidural injection of procaine, the oxygen

consumption, heart rate, cardiac index, and mean arterial pressure of thyroxine-

treated dogs were reduced to the values observed in euthyroid dogs with simi-

larly produced sympathetic blockade. In these animals the infusion of epineph-

rime or of levarterenol restored the oxygen consumption and the cardiovascular

functions of the thyroxine-treated dogs with sympathetic blockade to the level

of the thyroxine-injected animals with normal sympathetic activity. Consistently

greater effects of epinephrine were observed in thyrotoxic dogs than in euthyroid

dogs. They concluded that cardiovascular and calonigenic signs of thyrotoxicosis

were not due to direct effects of thyroxine per se, but were due to an augmenta-
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tion by thyroxine of the physiological effects of epinephrine and norepinephnine.

Additional support for this point of view comes from an early observation that

sympathetic denervation of the heart produced considerable protection against

thyroid intoxication (328). It has been observed, and confirmed, that an adrener-

gic blocking agent, dibenzyline, prevented the calonigenic effect of low doses of

thyroxine (269, 451). Although it has not been determined whether dibenzyline

interferes with the calorigenic action of epinephnime, some related haloethylamine

derivatives, including dibenamine, did reduce the effects of epinephrine and

levarterenol on oxygen consumption (564a).

Effects of epinephrine on iodine metabolism and thyroid function. This subject

was reviewed briefly by Money (398) and by Barker (19). A reasonably con-

sistent picture of the effect of epinephrine on the thyroid and on iodine metabo-

lism has emerged from the results of several groups of investigators. Chronic

administration of epinephrine to dogs induced hyperplasia and hypertrophy of

the thyroid, followed by some regression of these histologic changes. The changes

in blood thryrotropic hormone in epinephrime-treated, thyroidectomized dogs

were a rise and then a fall in a time sequence consistent with the histologic

changes in the epinephrine-treated intact animals (508).

Epinephrine diminished the I’s’ uptake by the thyroids of normal or of adrenal-

ectomized rats (50, 207, 559, 588). Soffer et at. (507) observed this response in

intact rats, but they found that epinephrine increased the 1131 uptake in adrenal-

ectomized rats. Despite the conificting evidence, Verz#{225}r (559) concluded that

the depression of I’s’ uptake was not mediated by an epinephrine-induced release

of adrenal cortical hormones. Levarterenol was less than 3/� as effective as epi-

nephrine in reducing the thyroidal I’s’ uptake (207). The thyroidal uptake of

Jill was increased by epinephrime in normal humans, but was not influenced in

patients with Addison’s disease or with panhypopituitarism (458). In this case

the difference between the responses of humans and of rats may not be a species

difference, but rather a difference in dosages. The smallest dose which re-

duced I’s’ uptake by the thyroid in rats was approximately 0.1 mg/kg (50); in

man, the dose which increased J�3i uptake was approximately 4 /Lg/kg (458).

Within the first few hours after a single injection of epinephrine, organically

bound J131 of the thyroid diminished (49, 50, 588), but with repeated injections

of epinephrine, started 16 hours after the administration of the 1131, there was a

reduced loss of Jh3� from the thyroid (207).

Protein-bound iodine of the serum was reduced by epinephrine in intact or in

thyroidectomized animals (49, 191, 588). Therefore, it was suggested that epi-

nephnine increased the rate of peripheral utilization of thyroxine and may

increase the release of corticotropin through this action, as well as by an action

directly on the pituitary.

The oxygen consumption of thyroid tissue in vitro was increased by epineph-

rine (5).

Viale and Kurie (562) reported that extirpation of thyroid and parathyroid

glands, or of only the parathyroids, prevented epinephrine hyperthermia.
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VIII. MISCELLANEOUS EFFECTS OF EPINEPHR1NE

1. Blood clotting. It is an old established fact that the administration of epi-

nephnine (566) reduces the clotting time of blood, but the mechanism of this

effect is poorly understood. This subject was reviewed by Seegers (495).

There have been several investigations of the mechanism of this action of

epinephrine. Wakim et at. (567) sought the answer in the prothrombin activity,

but this was unchanged. Sen et al. (497) correlated the clotting effect with the

increased platelet count induced by epinephrine. They further supported this

relationship by showing that, in rabbits in which the spleens had been excluded

from the general circulation, epinephrine caused neither a decrease in the clotting

time nor an increase in the platelets of the blood.

When relatively low concentrations of epinephrine or of levarterenol were

added to whole blood in vitro, Waldron (574) observed a shortening of blood

clotting time. He explained the negative findings of Cannon and Gray (70) as a

consequence of collecting whole blood in uncoated glass tubes which now are

known to accelerate the clotting of blood.

Epinephrine did not reduce the clotting time of blood in hypophysectomized

turtles (364), but epinephrine was effective in decapitated cats (70).

Macht and Golden (380) reported that amphetamine was more effective than

either d-amphetamine or methamphetamine in promoting clotting. Since

amphetamine reduced the prothrombin time (380) and epinephrine did not (567),

the mechanisms of the shortening of clotting time by the two drugs obviously

differ.

2. Bleeding time. Derouaux (138) reported a shortening of the bleeding time

after the administration of epinephrine or of one of several closely related com-

pounds in his series of sympathomimetic drugs. The potencies of the catechol

derivatives for the hemostatic effect correlated well with their pressor potencies.

In the total group of sympathomimetic agents there was some general resem-

blance between the potencies for the effects on blood pressure and on bleeding

time, but too many exceptions occurred to attribute the decreased bleeding time

solely to the vasoconstrictor action.

Shortening of the bleeding time occurs rapidly after less than 10 �zg/kg of

epinephnine and the effect persists for more than 70 minutes, a duration that far

exceeds any vascular effects (331). Kuschinsky and Schimassek (331) attribute

this effect of epinephrine on bleeding time to the liberation of histamine (vide

infra), since pre- or post-treatment with antihistaminics antagonized the action

of epinephrine. Since adrenergic blocking activity is common with larger doses

of several antihistaminic compounds (298a, 322, 530), blockade of epinephrine

effects with compounds of this group does not necessarily implicate histamine in

the mediation of the effect. It w’ould be of interest to determine the time course

of the blood platelet changes (497), referred to above, with the temporal changes

in bleeding time.

3. Appetite. In relatively small doses, epinephrine was found to lessen food
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intake in rabbits (66). This kind of action is better known for sympathornimetic

amines structurally related to amphetamine.

4. Release of histamine by epinephrine and related ainines. Increased blood

histamine was found following the administration of epinephnine (24). The in-

creased histamine was not related to the epinephrine-induced leukocytosis (24).

The correlation of the elevated histamine and the increased platelets (497)

should be investigated since the platelets contain most of the blood histamine

(465).

Some related sympathomimetic amines have been found to increase plasma

histamine (24). Cobefrine was about as effective as epinephrine; norepinephrine

was only about 3rg as effective; and sympatol was about �oo as effective.

5. Effects of vitamins and metabolites on the metabolic effects of epinephrine.

Epinephrine hyperglycemia was increased by the administration of vitamin C

and was reduced in vitamin C-deficient animals (501).

In riboflavin-deficient dogs, epinephnine produced an exaggerated, prolonged

hyperglycemia, and liver glycogen recovered very slowly toward the normal level

(13). This modified response to epinephrine may be caused by a reduced rate of

assimilation of lactate and glucose by the liver and other tissues in the riboflavin-

deficient animal. Evidence for this interpretation was the excessive postabsorp-

tive hyperlacticacidemia in riboflavin-deficient animals.

Nicotinic acid (399) or nicotinamide (223) potentiated epinephnine hyper-

glycemia. Some potentiation of epinephrine hyperglycemia was produced also

by thiamine (60).
Hepatic ascorbic acid, unlike adrenal ascorbic acid, was not reduced by epi-

nephrine (480), but blood ascorbic acid was reduced (224).

The report that epinephnine caused a mobilization of vitamin A from the liver

into the blood could not be confirmed (232). The difference in results was par-

tially explained by the finding that in about 50% of a series of tests epinephnine

increased blood vitamin A, but the average of all tests indicated no change in

blood vitamin A (264).

Giertz and Jurna (220) reported that methyl-donor compounds potentiated

norepinephrine hyperglycemia more than epinephnine hyperglycemia. They in-

jected intravenously amounts of the amines which caused small elevations of

blood sugar. The large variations of response at this level reduce the significance

of the changes they observed.

6. Tolerance to epinephrine. Development of tolerance to various effects of

epinephrine has been reported repeatedly. Abderhalden and Gellhorn (2) ob-

served that mice, which had become tolerant to epinephrine, would show a good

calorigenic response to doses of epinephrine which would reduce the oxygen con-

sumption of, or kill,non-tolerant mice. These investigators also noted a greaten

tolerance toward epinephrine in the thyroidectomized mice. Essex (192) reported

that a tolerance to the lethal effect of epimephrine developed in dogs. Repeated

epinephrine-hyperglycemia tests led to reduced responses. A diet high in carbo-

hydrate also reduced the average hyperglycemic response to epinephrine (9).

Bennett (30) recorded the hyperthermic response to daily administration of epi-
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nephrine in rabbits and found that no tolerance developed over a period of two

weeks.

7. Miscellaneous effects of epinephrine and related compounds on cell-free prepa-

rations and on enzymes. The hypothesis that central nervous system stimulation

by certain sympathomimetic amines depends on the inhibition of amine oxidase

was tested by comparing stimulating potency and inhibition of amine oxidase.

The results were in part consistent with the hypothesis, but there were sufficient

exceptions to weaken the foundation of this hypothesis (201).
Neither arginase nor acid phosphatase activity of the rat liver was influenced

by the injection of epinephrine. The arginase activity, however, was increased by

adrenal cortical hormones (319). Amino acid oxidase of the liver was inhibited

by epinephrine both in vivo and in vitro (65). Protease activity of rabbit liver

was increased after epinephnine administration (296).

Ungar and Hummel (553) reported some interesting observations on the inhi-

bition by sympathomimetic and sympatholytic substances of salicylaldehyde

oxidation in liver extract. Although low concentrations of the drugs were inhi-

bitory, the relative activities were not consistent with pharmacological potencies.

For example, epinine and kephrine were more potent than epinephrine. Never-

theless, the broad generalizations were interesting: the catechol derivatives were

more potent than the phenolic compounds; ephedrine and other phenylalkyl-

amines and alkylamines were inactive. The sympatholytics were quite potent.

Dibenamine produced irreversible inhibition, whereas inhibition by epinephnine

was reversible.

Govier et at. (234) studied an isolated oxidation system with which they at-

tempted to determine the biochemical mode of action of sympathomimetic

amines. They discovered that a-tocopherol would inhibit their succinoxidase sys-

tem. Epinephrine and other amines reduced the effect of a-tocopherol on the

system. Since epinephrine was required in amounts equivalent to, or greater

than, a-tocopherol, and since ascorbic acid and cysteine would relieve the

a-tocopherol inhibition, epinephrine could be acting as a reducing agent. This,

however, would not account for the activities of amphetamine and phenylethyl-

amine. The same investigators (235) observed that, in pigeon liver slices, certain

sympathomimetic amines activated cocarboxylase synthesis from thiamine. The

mechanism of this activation has not been studied further, nor has the effect

been related to other effects of sympathomimetic amines on liver. A somewhat

related esterification, which was reported to be stimulated by epinephrine, was

the synthesis of acetylcholine by brain homogenates (544).

Inhibition of cholinesterases by epinephrine and ephedrine has been reinvesti-

gated by Benson (31, 32). These amines had very weak inhibitory activity:

similar degrees of inhibition were produced by 3 x 10� M epinephrine, 3 x 10�

M ephedrine, and 1 x 10� M esenine. It is evident that no epinephrine effects

in intact animals should be attributed to cholinesterase inhibition.

Since epinephrine produces positive inotropic effects on muscle, it is interesting

that Straub et at. (524) found that epinephrine activates the transformation of

actin-G to actin-F. The high concentration of epinephnine which was used in
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these experiments makes it unlikely that this effect plays a role in the action of

epinephrine on muscle function.

Epinephrine injections in rats did not affect the hexokinase activity of muscle

(90). Therefore, inhibition of glucose uptake by muscle must be explained by

secondary changes such as the increase in muscle glucose-6-phosphate.

Tryptophan peroxidase activity of rat liver was increased by epinephrine in

intact, but not in adrenalectomized, rats (318).

Randall (452) found that even relatively large amounts of epinephrine did not

inhibit anaerobic glycolysis in rat brain homogenates. Adrenochrome was a

fairly potent inhibitor in his test system.

Adenosinetriphosphatase could control tissue oxygen consumption by making

more adenosinediphosphate available. Epinephrine was found to have no effect

on adenosinetriphosphatase either in slices or homogenates of rat heart (77).

IX. CONCLUDING REMARKS

The most exciting segment of the literature included in this review is un-

doubtedly the recent progress toward unraveling the mechanism of the glyco-.

genolytic effect of epinephrine. Epinephnine appears to control the cellular con-

centration of active phosphorylase, the enzyme which catalyzes the reversible

reaction glycogen + phosphate ± glucose-i-phosphate. “The concentration of

active phosphorylase. . . represents a balance between inactivation (dephos-

phorylation) by inactivating enzyme (phosphorylase phosphatase) and reactiva-

tion by dephosphophosphorylase kinase. . . [and] - - - epinephrine displace[s]

this balance in favor of the active phosphorylase” (449). This action of epineph-

rine has now been demonstrated in the absence of intact cells.

Since the first step in glycogenolysis is the slowest and, thus, the rate-limiting

reaction, epinephrine, by increasing the level of active phosphorylase, causes an

increased glycogenolysis, which, in turn, causes an increase in the cellular con-

centrations of glucose-i-phosphate and glucose-6-phosphate. In the liver the

increased concentration of glucose-6-phosphate accelerates the rate of glucose

liberation and thus causes hyperglycemia. In muscle there is a more rapid forma-

tion of lactic acid, as well as an increase in glucose-6-phosphate. The lactic acid

liberated from the muscle is the major cause of the hyperlacticacidemia. The

blood lactate is rapidly utilized by the liver to support an enhanced production

of glucose and a prolonged hyperglycemia. Since epinephrine elevates muscle

glucose-6-phosphate concentration, and since glucose-6-phosphate at concentra-

tions found in muscle does inhibit hexokinase, these facts explain the depression

of glucose utilization by epinephrine. According to some investigators, the

calorigenic effect of epinephrine may be caused by the hyperlacticacidemia.

Although this proposed mechanism requires extensive corroboration, it must be

granted that this proposal has more in its favor than the suggested, but poorly

substantiated, direct effects of epinephnine on tissue oxygen consumption.

Some effects of epinephrine on protein and lipide metabolism have been ade-

quately demonstrated, but there is little information on the cellular mechanisms

which are affected. Several observations indicate that protein catabolism and fat
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catabolism occur when liver glycogen is severely depleted by epinephrine. This

would tend to support a suggestion by Con (99) that possibly all the metabolic

effects of epinephrine are the result of primary glycogenolytic action. Since there

have been several reports that epinephrine increased fatty acid catabolism in

liver slices and in liver homogenates, an analysis of the mechanism of the effect

of epinephnine on lipide metabolism may be forthcoming.

The effects of epinephrine on electrolyte and water exchange are varied and

complex. Potassium changes in liver and voluntary muscle in response to epi-

nephrine have been under investigation for decades, and there is a growing

interest in the effects of epinephrine on the potassium of cardiac and smooth

muscles. Epinephrine action on the liver results in a large, transient loss of potas-

sium followed by an increased uptake of potassium. The epinephnine-induced loss

of potassium from the liver ordinarily occurs in association with glucose libera-

tion, but several observations indicate that glucose liberation and potassium loss

from the liver may be dissociated. The effects of epinephrine on muscle potassium

are the reverse of the effects on liver potassium; the effect in muscle is a retention

of potassium followed by an increased loss. Potassium retention by muscle in

response to epinephrine has been attributed to the associated increase in the

concentrations of the hexosemonophosphates. Although information on the

effects of epinephrine on cardiac and smooth muscle potassium are scanty, the

data suggest that epinephnine causes a loss of potassium from muscles in which

activity is increased (heart, blood vessel, rabbit uterus) and that epinephrine

causes an uptake of potassium by muscle in which activity is reduced (guinea pig

taenia coli). An investigation of a large variety of smooth muscles will be needed

in order to determine whether the pharmacological effects and potassium changes

are indeed related.

Sodium and water extrusion by frog skin is markedly accelerated by epineph-

rime. The mechanism of this interesting action of epinephrine may have to await

the discovery of the systems which normally control intracellular electrolyte

concentration. There is, nonetheless, an urgent need for further exploration of the

manner in which electrolyte distribution is affected by epinephrine, as well as a

need for exploring the importance of the electrolyte shifts in the pharmacological

actions of epinephrine.

The reduction of serum phosphate during epinephrine hyperglycemia is ac-

companied by an increased transfer of phosphate into muscle and liver. There is

an increased phosphate gradient between extracellular and intracellular com-

partments as a result of the reduction in intracellular inorganic phosphate which

is organically bound in the increased amounts of hexosemonophosphates. An

additional factor which leads to a reduction in serum phosphate is the action of

insulin secreted in response to epinephrine hyperglycemia.

The interactions of epinephrine and the hormones are quite complex. Some

light is being shed on the detailed mechanism of insulin-epinephrine antagonism.

Thyroxine appears to regulate the degree of response to epinephnine but the

intimate mechanisms of these interactions are not yet known. The adrenocortical

hormones profoundly influence the actions of epinephrine on the metabolism of
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carbohydrate, lipide, protein, and potassium. In the absence of the adrenal gland

many of the typical responses to epinephrine are severely diminished or entirely

absent.

Epinephrine and the sympathomimetic amines appear to influence many

phases of organic and inorganic metabolism. With the exception of the effects on

carbohydrate metabolism, little is known of the cellular mechanisms of the many

metabolic responses to epinephrine. The advances have been great in recent years

and much more detailed knowledge concerning cellular mechanisms may be

expected in the near future. There are two general questions which deserve the

attention of investigators interested in these important physiological and phar-

macological agents. 1) Can the large variety of metabolic responses to epineph-

rime be the result of a single, primary effect on cells, such as the glycogenolytic

effect, or does epinephrine induce independent catalytic effects on each kind of

metabolism which it affects? 2) Are the changes in the activities of muscular

tissues, nervous tissues, etc. in response to epinephnine the result of a single

primary metabolic action or are these effects also independent, dissociated

responses to epinephnine?
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